Sepam series 20, series 40, series 80

Digital protection relays

Catalogue 2010

General Content

Range description

Sepam series 20 and Sepam series 40

Sepam series 80

Additional modules and accessories

Order form

Index

1

2

3

4

5

6

Increase energy availability

Image: MaximumTop://www.control.MaximumYour electrical equipment is under control.

Maximum dependability Your electrical equipment is under control. With Sepam protection relays, you get maximum energy availability for your process.

Sepam protection relays Number one in dependability

Maximize energy availability and the profits generated by your installation while protecting life and property.

Keep informed to manage better

With Sepam, you get intuitive access to all system information in your language so that you can manage your electrical installation effectively. If a problem occurs, clear and complete information puts you in a position to make the right decisions immediately. The electrical supply is restored without delay.

Maintain installation availability

Sepam maintains high energy availability thanks to its diagnostics function that continuously monitors network status. In-depth analysis capabilities and high reliability ensure that equipment is de-energized only when absolutely necessary. Risks are minimized and servicing time reduced by programming maintenance operations.

Enhance installation dependability

Sepam series 80 is the first digital protection relay to deliver dependability and behaviour in the event of failure meeting the requirements of standard IEC 61508. Sepam manufacturing quality is so high that the units can be used in the most severe environments, including off-shore oil rigs and chemical factories (IEC 60062-2-60).

1982

Launch of first multi-functional digital protection relay

2008

Over 400,000 Sepam units installed around the world

Electrical utilities, petrochemical plants, hospitals, infrastructures, shopping centres, small industry.

Improve satisfaction

A set of simple and effective functions suited to your customer's application

Fast response from Schneider Electric: save time at every step in your project

100% satisfaction

With Sepam protection relays, you can count on simple, high-performance products and the support of top-notch Schneider Electric teams. Meet your obligations the easy way.

Sepam protection relays

Save time at every step in project development and installation to consistently meet your project deadlines.

Go for simplicity

With multi-functional Sepam protection relays, you can measure, manage, analyze and produce diagnostics for all applications in an installation. Range modularity makes it easy to select the relay corresponding exactly to your needs.

The range is structured for typical applications (substations, transformers, generators, capacitors, busbars and motors) and provides the necessary functions for each application (protection, metering, control and monitoring, etc.).

Starting with a Sepam base unit, complete solutions can be built up by adding input/output modules, sensors and communication modules.

Make configuration easily

A single PC software tool for the entire Sepam range makes system start-up and operation particularly easy. The user-friendly program guides you step by step from the initial programming on through to final commissioning. Sepam produces a detailed report on system configuration and all the activated protection functions. On Sepam series 80, the entire setup is saved to a memory cartridge that can be accessed in front, for instance when replacing a unit.

Communicate the open way

In addition to the DNP3, IEC 60870-5-103 and Modbus standards, Sepam complies with IEC 61850 and uses the communication protocol that is today's market standard to interface with all brands of electrical-distribution devices.

19(

countries

Schneider Electric

does business in 190

Installation

Setup

ndard

IEC 61850

Local display

Supervision

Schneider Belectric

Range description

Maximize protection

What level of safety? For what applications?

Sepam range design is based on a simple idea. All users should be able to find a solution corresponding exactly to their needs and offering the right balance between performance, simplicity and cost.

Start-up was never so easy

The Sepam programming and operating software provides a single environment for the entire range. The result is a simple, user-friendly approach for fast commissioning.

The selection guide proposes the Sepam types suited to your protection needs, based on the characteristics of your application.

The most typical applications are presented with the corresponding Sepam.

Each application example is described by:

- a single-line diagram indicating:
- □ equipment to be protected

□ network configuration

□ position of measurement sensors

■ standard and specific Sepam functions to be implemented to protect the application.

The list of functions is given for information purposes. Earthing, wether direct or via an impedance, is represented by the same pictogram,

i.e. the pictogram corresponding to a direct connection.

12

Selection guide for all applications

		Series	10 See ca	atalogue am series 10	Series 20	Page 51
			-9-			
		*			*	
Protection	ns					
	Current	•			• •	
	Voltage					• •
	Frequency					
	Specifics	phase and earth fault overcurrent	phase and earth fault overcurrent	earth fault overcurrent	breaker failure	disconnection by rate of change of frequency
Applicatio	ons					
Sub	ostation P. 16	Α	В		S20 S24	
	Busbar P. 18					B21 B22
Trans	sformer P. 20	A	В	N	T20 T24	
	Motor P. 26				M20	
	nerator P. 30				 	
	apacitor P. 34					
Character	ristics					
Logic inputs/	Inputs	4	0	0	0 to 10	0 to 10
outputs	Outputs	7	3	3	4 to 8	4 to 8
Temperature se	insors				0 to 8	0 to 8
	Current	3l + lo	3l + lo	lo	3l + lo	
Channel	Voltage					3V + Vo
	LPCT ⁽¹⁾				Yes	Yes
Communication		1			1 to 2	1 to 2
Control	Matrix ⁽²⁾ Logic equation editor				Yes	Yes
	Logipam ⁽³⁾					
Other	Memory cartridge with settings					
Outor	Backup battery					

LPCT : low-power current transducer complying with standard IEC 60044-8.
 Control matrix for simple assignment of information from the protection, control and monitoring functions.
 Logipam ladder language (PC programming environment) to make full use of Sepam series 80 functions.

		Série	e 40						Page 51	
				Trans.						
		*		8						
Protectio	ns									
	Current								•	
	Voltage	•						•		
	Frequency	•	directional	diractional	directional		directional	directional	dissetional	
	Specifics		directional earth fault	directional earth fault and phase overcurrent	directional earth fault		directional earth fault	directional earth fault and phase overcurrent	directional earth fault	
Applicati	ons									
Sul	bstation P. 16	S40	S41	S42	S43	S50 ⁽⁴⁾	S51 ⁽⁴⁾	S52 ⁽⁴⁾	S53 ⁽⁴⁾	
	Busbar P. 18									
Tran	sformer P. 20	T40		T42		T50 ⁽⁶⁾		T52 ⁽⁶⁾		
	Motor P. 26		M41							
Ge	enerator P. 30	G40								
	apacitor P. 34									
Characte										
Logic inputs/	Inputs	0 to 10								
outputs	Outputs	4 to 8								
Temperature se	· · · · ·	0 to 16								
	Current	3I + Io								
Channel	Voltage	3V								
	LPCT (1)	Yes								
Communication	n ports	1 to 2								
	Matrix (2)	Yes								
Control	Logic equation editor	Yes								
	Logipam ⁽³⁾ Memory cartridge with								 	
Other										
	Backup battery									

LPCT : low-power current transducer complying with standard IEC 60044-8.
 Control matrix for simple assignment of information from the protection, control and monitoring functions.
 Logipam ladder language (PC programming environment) to make full use of Sepam series 80 functions.

(4) S5X applications are identical to S4X applications with the following additional functions :

■ earth fault and phase overcurrent cold load pick-up,

■ broken wire detection,

■ fault locator.

(5) T5X applications are identical to T4X applications with the following additional functions :

earth fault and phase overcurrent cold load pick-up

Schneider Gelectric

broken wire detectionr.

1

Série 80			Page 89
	•		
	B		
directional directional disconnection earth fault earth fault by rate of and phase change of overcurrent frequency	transformer & machine transformer- machine unit differential	voltage and frenquency protection for 2 sets of busbars	capacitor-bank unbalance
S80 S81 S82 S84			
B80		B83	
T81 T82	<mark>T87</mark>		
M81	M88 M87		
G82	G88 G87		
			C86
0 to 42	0 to 42	0 to 42	0 to 42
5 to 23	5 to 23	5 to 23	5 to 23
0 to 16	0 to 16	0 to 16	0 to 16
3l + 2 x lo	2 x 3l + 2 x lo	3l + lo	2 x 3l + 2 x lo
3V + Vo	3V + Vo	2 x 3V + 2 x Vo	3V + Vo
Yes	Yes	Yes	Yes
2 to 4	2 to 4	2 to 4	2 to 4
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes
Yes	Yes	Yes	Yes

Substation applications

Feeder protection

Protection functions	ANSI code	S20	S24 (5)	B22	S40 S50	S41 S51	S42 S52	S43 S53	S80	S81	S82	S84
Phase overcurrent ⁽¹⁾	50/51	4	4		4	4	4	4	8	8	8	8
Phase overcurrent cold load pick-up	CLPU 50/51		1		4 ⁽⁶⁾	4 ⁽⁶⁾	4 ⁽⁶⁾	4 ⁽⁶⁾				
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4		4	4	4	4	8	8	8	8
Earth fault cold load pick-up	CLPU 50N/51N		1		4 ⁽⁶⁾	4 ⁽⁶⁾	4 ⁽⁶⁾	4 ⁽⁶⁾				
Breaker failure	50BF		1		1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	1	1		2	2	2	2	2	2	2	2
Broken conductor	46BC				1 ⁽⁶⁾	1 ⁽⁶⁾	1 ⁽⁶⁾	1 ⁽⁶⁾				
Thermal overload for cables	49RMS									2	2	2
Directional phase overcurrent ⁽¹⁾	67						2				2	2
Directional earth fault ⁽¹⁾	67N/67NC					2	2	2		2	2	2
Directional active overpower	32P					1	1	1		2	2	2
Directional active underpower	37P											2
Positive sequence undervoltage	27D			2					2	2	2	2
Remanent undervoltage	27R			1					2	2	2	2
Undervoltage (L-L or L-N)	27			2/1 (4)	2	2	2		4	4	4	4
Overvoltage (L-L or L-N)	59			2	2	2	2		4	4	4	4
Neutral voltage displacement	59N			2	2	2	2		2	2	2	2
Negative sequence overvoltage	47				1	1	1		2	2	2	2
Overfrequency	81H			1	2	2	2		2	2	2	2
Underfrequency	81L			2	4	4	4		4	4	4	4
Rate of change of frequency	81R			1								2
Recloser (4 cycles) ⁽²⁾	79											
Synchro-check ⁽³⁾	25											

The figures indicate the number of units available for each protection function

standard,

 options.
 Protection functions with 2 groups of settings.
 According to parameter setting and optional input/output modules.

(2) Vith optional MCS025 synchro-check module.
 (3) With optional MCS025 synchro-check module.
 (4) 2 undervoltage (L-L) and 1 undervoltage (L-N).
 (5) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.

(6) Only for applications S50, S51, S52, S53, T50, T52.

Feeder protection

DE88401

■ feeder short-circuit and overload protection.

Protection of low-capacitance feeders in impedance earthed or solidly earthed neutral systems: Sepam S20, S24, S40, S50 or S80

no voltage and frequency monitoring. voltage and frequency monitoring.

Protection of high-capacitance feeders in impedance earthed or compensated or isolated neutral systems: Sepam S41, S43, S51, S53 or S81

■ specific feeder protection: 67N/67NC.

Substation applications

Incomer protection

Incomer protection busbar short-circuit protection. Incomer protection: Sepam S20, S24, S40, S50 or S80 Protection of 2 incomers: Sepam S80 busbar voltage and ■ with automatic source transfer (ATS) and synchrono voltage and line voltage and frequency monitoring. frequency monitoring. frequency monitoring. check (ANSI 25). MCS025 S40 S50 S80 DE88404 DE88405 S40 S50 S80 DE88406 DE88018 S20 S24 S80 **S80** ATS ATS NC NC NO Parallel incomer protection: Sepam S42, S52 or Parallel-incomer protection with disconnection function: Sepam S20 + B22 S82 or Sepam S84 ■ specific line or source protection: 67, 67N/67NC. disconnection-specific functions: disconnection-specific functions: 27,59, 59N, 81L, 81R. 27,59, 59N, 81L, 81R, 32P, 37P. S20 S24 JE 88408 JF 88021 DE 8840 G G S84 0 B22 S42 S52 S82 S42 S52 S82 Protection of an incomer or coupling circuit breaker with load shedding based on frequency variations: Sepam S84 Ioad-shedding-specific functions: 81L, 81R. S84 **JE88022** E88025 S84 Ring-incomer protection: Sepam S42, S52 or S82 ■ line or source protection: 67, 67N/67NC directional logic discrimination. S42 S52 S82 S42 S52 S82 G S42 S52 S82 S42 S42 S42 S52 S82 S52 S82 S52 S82

1

Busbar applications

Protection functions	ANSI code	B21	B22	B80	B83
Phase overcurrent ⁽¹⁾	50/51			8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G			8	8
Breaker failure	50BF			1	1
Negative sequence / unbalance	46			2	2
Positive sequence undervoltage	27D	2	2	2	2
Remanent undervoltage	27R	1	1	2	2
Undervoltage (L-L or L-N)	27	2/1 ⁽³⁾	2/1 ⁽³⁾	4	4
Overvoltage (L-L or L-N)	59	2	2	4	4
Neutral voltage displacement	59N	2	2	2	2
Negative sequence overvoltage	47			2	2
Overfrequency	81H	1	1	2	2
Underfrequency	81L	2	2	4	4
Rate of change of frequency	81R		1		
Synchro-check ⁽²⁾	25				

The figures indicate the number of units available for each protection function

a standard, a options.
(1) Protection functions with 2 groups of settings.
(2) With optional MCS025 synchro-check module.
(3) 2 undervoltage (L-L) and 1 undervoltage (L-N).

Busbar applications

Incomer protection with additional busbar voltage monitoring

busbar short-circuit protection

line voltage and frequency monitoring.

Additional busbar voltage monitoring: Sepam B80

Transformer applications

Standard transformer application diagrams do not take voltage levels into account:

■ the transformer primary winding is always at the top ■ the transformer secondary winding is always at the bottom.

The transformer primary and secondary windings need to be protected.

The Sepam proposed can be installed on either the primary or secondary winding of the transformer. The other winding can be protected by an incomer or feeder type substation application Sepam.

Protection	ANSI	T20	T24 ⁽⁵⁾	T40	T42	T81	T82	T87
functions	code			T50	T52			
Phase overcurrent	50/51	4	4	4	4	8	8	8
Phase overcurrent cold load pick-up	CLPU 50/51		1	4 ⁽⁶⁾	4 ⁽⁶⁾			
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	4	8	8	8
Earth fault cold load pick-up	CLPU 50N/51N		1	4 ⁽⁶⁾	4 ⁽⁶⁾			
Breaker failure	50BF		1	1	1	1	1	1
Negative sequence / unbalance	46	1	1	2	2	2	2	2
Broken conductor	46BC			1 ⁽⁶⁾	1 ⁽⁶⁾			
Thermal overload for machines ⁽¹⁾	49RMS	2	2	2	2	2	2	2
Restricted earth fault differential	64REF					2	2	2
Two-winding transformer differential	87T							1
Directional phase overcurrent ⁽¹⁾	67				2		2	2
Directional earth fault ⁽¹⁾	67N/67NC				2	2	2	2
Directional active overpower	32P					2	2	2
Overfluxing (V / Hz)	24							2
Positive sequence undervoltage	27D					2	2	2
Remanent undervoltage	27R					2	2	2
Undervoltage (L-L or L-N)	27			2	2	4	4	4
Overvoltage (L-L or L-N)	59			2	2	4	4	4
Neutral voltage displacement	59N			2	2	2	2	2
Negative sequence overvoltage	47			1	1	2	2	2
Overfrequency	81H			2	2	2	2	2
Underfrequency	81L			4	4	4	4	4
Thermostat / Buchholz ⁽²⁾	26/63							
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T	□ 8 RTDs	□ 8 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs
Synchro-check (4)	25							
The figures indicate	the number of	f mita a	ailabla fa	r a a a b mr	ata atia a f	ination		

The figures indicate the number of units available for each protection function

a standard,

o options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.

(4) With optional MCS025 synchro-check module.

(5) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.

(6) Only for applications S50, S51, S52, S53, T50, T52.

Transformer applications

Transformer feeder protection

Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.

Transformer applications

Transformer feeder protection

Note: for long feeders, the 50G/51G function may be replaced by the 67N/67NC.

Transformer feeder differential protection: Sepam T87

Transformer applications

Transformer incomer protection

Transformer incomer protection

- transformer short-circuit and overload protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 49T).

Transformer incomer protection without voltage monitoring: Sepam T20, T24

Transformer applications

Transformer incomer protection

MCS025

NO

T81

ATS

NC

T81

ATS

NC

Transformer applications

Transformer incomer protection

Parallel transformer incomer protection: Sepam T42, T52 or T82

- transformer directional phase overcurrent protection: 67
- transformer secondary earth fault protection: 67N/67NC, 64REF
- with synchro-check (ANSI 25).

Parallel incomer differential protection: Sepam T87

- transformer differential protection: 87T
- directional transformer protection: 67
- transformer secondary earth fault protection: 50G/51G, 67N/67NC 64REF.

Motor applications

Protection functions	ANSI code	M20	M41	M81	M87	M88
Phase overcurrent ⁽¹⁾	50/51	4	4	8	8	8
Earth fault /	50/51 50N/51N	4	4	о 8	0 8	0 8
Sensitive earth fault ⁽¹⁾	50G/51G	4	4	0	0	0
Breaker failure	50BF		1	1	1	1
Negative sequence / unbalance	46	1	2	2	2	2
Thermal overload for machines ⁽¹⁾	49RMS	2	2	2	2	2
Two-winding transformer differential	87T					1
Machine differential	87M				1	
Directional earth fault ⁽¹⁾	67N/67NC		2	2	2	2
Directional active overpower	32P		1	2	2	2
Directional reactive overpower	32Q/40		1	1	1	1
Field loss (underimpedance)	40			1	1	1
Phase undercurrent	37	1	1	1	1	1
Excessive starting time, locked rotor	48/51LR/14	1	1	1	1	1
Starts per hour	66	1	1	1	1	1
Loss of synchronization	78PS			1	1	1
Overspeed (2 set points) ⁽²⁾	12					
Underspeed (2 set points) ⁽²⁾	14					
Positive sequence undervoltage	27D		2	2	2	2
Remanent undervoltage	27R		1	2	2	2
Undervoltage (L-L or L-N)	27		2	4	4	4
Overvoltage (L-L or L-N)	59		2	4	4	4
Neutral voltage displacement	59N		2	2	2	2
Negative sequence overvoltage	47		1	2	2	2
Overfrequency	81H		2	2	2	2
Underfrequency	81L		4	4	4	4
Thermostat / Buchholz	26/63					
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T	□ 8 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs

The figures indicate the number of units available for each protection function
standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.

Motor applications

Motor protection

- internal motor fault protection
- power supply fault protection
- driven load fault protection
- RTD temperature monitoring (ANSI 38/49T).

Motor protection without voltage monitoring: Sepam M20

Motor protection with voltage monitoring: Sepam M41 or M81

1

Motor applications

Motor-transformer unit protection

- motor and transformer protection against internal faults
- power supply fault protection
- driven load fault protection
- internal transformer protection: Thermostat / Buchholz (ANSI 26/63)
- RTD temperature monitoring (ANSI 38/49T).

Motor-transformer unit protection without voltage monitoring: Sepam M20

■ transformer primary earth fault protection: 50G/51G.

Note: monitoring of motor insulation must be ensured by another device.

Motor-transformer unit protection with voltage monitoring: Sepam M41

- motor earth fault protection: 59N
- transformer primary earth fault protection: 50G/51G.

Motor-transformer unit protection with voltage and transformer monitoring: Sepam M81

- motor earth fault protection: 59N
 transformer primary earth fault
- protection: 50G/51G ■ transformer monitoring: Buchholz,

thermostat, temperature measurement.

 motor earth fault protection: 50G/51G
 transformer primary earth fault protection: 50G/51G

 transformer monitoring: Buchholz, thermostat, temperature measurement.

Motor applications

Generator applications

1		

Protection functions	ANSI	G40	G82	G87	G88
	code				
Phase overcurrent ⁽¹⁾	50/51	4	8	8	8
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	8	8	8
Breaker failure	50BF	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2
Thermal overload for machines ⁽¹⁾	49RMS	2	2	2	2
Restricted earth fault differential	64REF		2		2
Two-winding transformer differential	87T				1
Machine differential	87M			1	
Directional phase overcurrent ⁽¹⁾	67		2	2	2
Directional earth fault ⁽¹⁾	67N/67NC		2	2	2
Directional active overpower	32P	1	2	2	2
Directional reactive overpower	32Q/40	1	1	1	1
Directional active underpower	37P		2		
Field loss (underimpedance)	40		1	1	1
Loss of synchronization	78PS		1	1	1
Overspeed (2 set points) ⁽²⁾	12				
Underspeed (2 set points) ⁽²⁾	14				
Voltage-restrained phase overcurrent	50V/51V	1	2	2	2
Underimpedance	21B		1	1	1
Inadvertent energization	50/27		1	1	1
Third harmonic undervoltage / 100% stator earth fault	27TN/64G2 64G		2	2	2
Overfluxing (V / Hz)	24		2	2	2
Positive sequence undervoltage	27D		2	2	2
Remanent undervoltage	27R		2	2	2
Undervoltage (L-L or L-N)	27	2	4	4	4
Overvoltage (L-L or L-N)	59	2	4	4	4
Neutral voltage displacement	59N	2	2	2	2
Negative sequence overvoltage	47	1	2	2	2
Overfrequency	81H	2	2	2	2
Underfrequency	81L	4	4	4	4
Thermostat / Buchholz	26/63				
Temperature monitoring (16 RTDs) ⁽³⁾	38/49T	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs	□ 16 RTDs
Synchro-check (4)	25				

The figures indicate the number of units available for each protection function

The figures indicate the fulfible of units available for each protection in a standard,
or options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

Generator applications

Generator protection

- internal generator fault protection
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.

Protection of a separate generator: Sepam G40

Protection of a generator coupled to other generators or to a network: Sepam G82

Short-circuit detection on generator side: 67.

Generator applications

Generator-transformer unit protection

- generator and transformer protection against internal faults
- network fault protection
- driving machine fault protection
- RTD temperature monitoring (ANSI 38/49T)
- voltage and frequency monitoring.

Separate generator-transformer unit protection. Sepam G40

Earth fault protection:

Note: monitoring of generator insulation must be ensured by another device.

Generator applications

Capacitor applications

1		

Protection functions	ANSI code	S20	S24 ⁽³⁾	S40	C86
Phase overcurrent ⁽¹⁾	50/51	4	4	4	8
Phase overcurrent cold load pick-up	CLPU 50/51		1		
Earth fault / Sensitive earth fault ⁽¹⁾	50N/51N 50G/51G	4	4	4	8
Earth fault cold load pick-up	CLPU 50N/51N		1		
Breaker failure	50BF		1	1	1
Negative sequence / unbalance	46	1	1	2	2
Thermal overload for capacitors ⁽¹⁾	49RMS				2
Capacitor-bank unbalance	51C				8
Positive sequence undervoltage	27D				2
Remanent undervoltage	27R				2
Undervoltage (L-L or L-N)	27			2	4
Overvoltage (L-L or L-N)	59			2	4
Neutral voltage displacement	59N			2	2
Negative sequence overvoltage	47			1	2
Overfrequency	81H			2	2
Underfrequency	81L			4	4
Temperature monitoring (16 RTDs) ⁽²⁾	38/49T				□ 16 RTDs

The figures indicate the number of units available for each protection function

(1) Protection functions with 2 groups of settings.
(2) With optional MET148-2 temperature input modules.
(3) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.

Capacitor applications

Capacitor bank protection

Protection of a capacitor bank (delta connection) without voltage monitoring: Sepam S20, S24

capacitor bank short-circuit protection.

Protection of a capacitor bank (delta connection) with voltage monitoring: Sepam S40 or C86

- capacitor bank short-circuit protection
- voltage and frequency monitoring
- overload protection: ANSI 49RMS (Sepam C86 only).

Protection of a double-star connected capacitor bank with 1 to 4 steps: Sepam C86

- capacitor bank short-circuit protection
- voltage and frequency monitoring
- specific overload protection, self-adapted to the number of connected steps
- unbalance protection: 51C.

Communication networks and protocols

All Sepam relays communicate and can be integrated in a communication architecture. All Sepam information can be accessed remotely.

Sepam connection to two communication networks (S-LAN and E-LAN).

Two types of communication network

Sepam relays can be connected to two types of networks, thus providing access to different types of information:

- a supervisory local area network or S-LAN
- an engineering local area network or E-LAN.

Examples of communication architectures are presented on pages 40 to 42.

Supervisory local area network (S-LAN)

An S-LAN is used for supervision functions concerning the installation and the electric network. It can be used to connect a set of communicating devices using the same communication protocol to a centralized supervision system. Sepam can be connected to an S-LAN using one of the following communication protocols:

- Modbus RTU
- Modbus TCP/IP
- DNP3
- IEC 60870-5-103
- IEC 61850

Engineering local area network (E-LAN)

An E-LAN is intended for Sepam parameter-setting and operating functions. It can be used to connect a set of Sepam units to a PC running the SFT2841 software. In this configuration, the operator has remote and centralized access to all Sepam information, with no need to develop any special communication software. The operator can easily:

- set up the Sepam general parameters and functions
- collect all Sepam operating and diagnostics information
- manage the protection system for the electric network
- monitor the status of the electric network
- run diagnostics on any incidents affecting the electric network.

Communication protocols

Modbus RTU

Modbus RTU is a data-transmission protocol, a de facto standard since 1979 widely used in industry and accepted by many communicating devices. For more information on the Modbus RTU protocol, visit www.modbus.org.

Modbus TCP/IP

The Modbus TCP/IP communication protocol offers the same functions as Modbus RTU as well as compatibility with multi-master architectures

DNP3

DNP3 is a data-transmission protocol specially suited to the needs of distributors for remote control/monitoring of substations in the electric network. For more information on the DNP3 protocol, visit www.dnp.org.

IEC 60870-5-103

IEC 60870-5-103 is an accompanying standard for the standards in the IEC 60870-5 series. It defines communication between protection devices and the various devices in a control system (supervisor or RTU) in a substation. For more information on the IEC 60870-5-103 protocol, visit www.iec.ch.

IEC 61850

The standards in the IEC 61850 series define a protocol for communication in electrical substations. The Ethernet-based protocol offers advanced characteristics and interoperability between multi-vendor devices.

The Sepam relay handles the station bus, in compliance with standards IEC 61850-6, 7-1, 7-2, 7-3, 7-4 and 8-1 edition 1.

For more information on the IEC 61850 protocol, visit www.iec.ch.
Communication networks and protocols

Other protocols

A gateway / protocol converter must be used to connect Sepam to a communication network based on other protocols.

IEC 60870-5-101

The CN1000 gateway developed by EuroSystem enables Sepam connection to IEC 60870-5-101 networks.

This gateway is quick and simple to implement using the supplied configuration software integrating all Sepam parameters.

For more information on the CN1000 gateway, visit www.euro-system.fr.

Implementation

A complete range of Sepam communication interfaces

ACE850 communication interface

Sepam IEC 61850 server

Sepam communication interfaces

A complete range of accessories

Sepam connects to a communication network via a communication interface. Selection of the interface depends on the communication architecture:

- number of networks to be connected:
- 1 network, S-LAN or E-LAN
- □ 2 networks, S-LAN and E-LAN
- communication protocol selected for the S-LAN: Modbus RTU, DNP3,
- IEC 60870-5-103 or IEC 61850 or Modbus TCP/IP
- network physical interface:
- □ 2-wire or 4-wire RS485
- □ Ethernet
- □ fiber optic, with star or ring architecture.

Sepam communication interfaces are presented in detail on page 183.

Direct Sepam connection to the Ethernet network

Sepam series 40 and Sepam series 80 units can be directly connected to the Ethernet network via the ACE 850 communication interface. In this way they make full use of Ethernet network performance and all IEC 61850 trans.

- Compatible communication protocols: Modbus TCP/IP, IEC 61850
- Network physical interface:
- □ 10 baseT /100 base TX (star or ring architecture)
- □ 100 base FX (star or ring architecture).

Easy implementation

The communication interfaces are remote modules that are easy to install and connect.

The SFT2841 software is used for complete setup of the communication interfaces: protocol selection and setup of the functions specific to each protocol

- protocol selection and setup of the full
- setup of the physical interface.

Advanced configuration of IEC 61850 protocol

The SFT850 software is used for advanced configuration of the IEC 61850 protocol for both the ECI850 server and the ACE850 communication interface:

- complete Sepam-configuration database (.icd)
- processing of system-configuration files (.scd)
- creation and processing of ECI850 and ACE850 configuration files (.cid).

IEC 61850 protocol

Two levels of IEC 61850 protocol functionality are supported by the Sepam range.

Sepam IEC 61850 level 1 server

The entire Sepam range can be connected to an IEC 61850 (level 1) system via the Sepam ECI850 server, representing the most economical solution. Level 1 allows :

- upgrading of existing IEC 61850 Modbus installations on a single Ethernet port
- supervision of electrical characteristics and Sepam status
- circuit breaker control

time-stamping, synchronisation via SNTP, network diagnostics and disturbance recording

The server also ensures compatibility with the E-LAN network.

Implementation

Sepam IEC 61850 level 2 Sepam series 40 and Sepam series 80 units can be connected directly to an IEC 61850 system via the ACE850 communication interface.

In this way they make full use of Ethernet network performance and all IEC 61850 functions.

- Compatible communication protocols: Modbus TCP/IP, IEC 61850
- Network physical interface :
- □ 10 baseT /100 baseTX (star or ring architecture)
- □ 100 base FX (star or ring architecture).
- Level 2 allows :
- Level 1 functions
- Dual port Ethernet for redundancy on Sepam series 40 and series 80 units (star or ring connection)
- GOOSE message on Sepam series 80 only (see below)
- Simultaneous Modbus TCP/IP TRA15

IEC 61850 GOOSE message

GOOSE messages allow standardised communication between Sepam units. Sepam series 80 and the ACE850 communication interface use GOOSE messages to provide :

- Improved system protection :
- □ logic discrimination
- □ intertripping
- □ load shedding
- Better system control :
- □ user-defined Logipam contacts
- High-level safety and performance are guaranteed for these messages by :
- using fiber optic connections,
- lusing Ethernet switches which are compatible with IEC 61850 and, for the ring connection, RSTP 802.1d 2004, such as RuggedCom switches (e.g. RS900xx, RSG2xxx)
- choosing a fault-tolerant communication architecture.

Ethernet gateways in a Modbus environment

Sepam can be connected to an Ethernet TCP/IP network in a totally transparent manner via the EGX100 gateway or the EGX300 server.

EGX100 gateway

The EGX100 offers access to enhanced communication and multi-master architectures. It provides IP (Internet Protocol) connection for communication on all types of networks, notably intranets and internet.

EGX300 server

In addition to Ethernet TCP/IP connection, the EGX300 offers a web server and HTML pages designed specially to present the essential Sepam information. This information may be accessed in clear text and at no risk on any PC connected to the intranet/internet and equipped with a web browser.

Access to Sepam information via a web browser.

Examples of architectures

1

- Seven typical communication architectures are presented in the examples below. Each architecture is presented with:
- a simplified diagram
- the characteristics of the implemented networks.

The physical architecture of the communication networks and the connection to networks depends on the type of network (RS485 or fiber optic) and the communication interfaces used. Sepam communication interfaces are presented in detail on page 184.

40

Examples of architectures

Example 5. Two parallel S-LAN networks (Sepam series 80) Supervisor 1 Supervisor 1 Protocol Modbus RTU DNP3 or IEC 60870-5-103 Supervisor 1 or RTU1 Physical medium Twisted-pair (2-wire or 4wire RS485) Supervisor 2 or RTU2

Note: the two communication ports on Sepam series 80 can also be used to create two redundant S-LANs connected to a single supervisor/RTU.

or fiber optic

An E-LAN can be added to the two S-LANs.

SUPErvisor 2 or RTU2 S-LAN S-Bam Sepam Series 80 Sepam Series 80

Examples of architectures

N over IEC 61850 and E-L	AN over Ethernet TCP/IP (Sepam series 40 and series 80) level 2
ernet network	ACE850TP or ACE850FO communication architecture
IEC 61850	
Ethernet 10/100 BaseTx or 100 Base Fx	Performance
 Level 1 functions Dual port Ethernet for redundancy on series 40 and series 80 (star or ring connection) GOOSE messaging service on series 80 only 	Redundancy performance tests have been conducted using RuggedCom switches (RS900xx and RSG2xxx ranges), compatible with RSTP 802.1d 2004. To ensure optimum performance of the protection system during communication between Sepam units via GOOSE messages, we strongly recommend setting up a fault-tolerant fiber optic ring structure as shown in the connection examples. <i>Note : Protection performance during communication between Sepam units via GOOSE</i>
	ernet network IEC 61850 Ethernet 10/100 BaseTx or 100 Base Fx Level 1 functions Dual port Ethernet for redundancy on series 40 and series 80 (star or ring connection)

fiber optic connections

■ IEC 61850-compatible managed Ethernet switches.

ROOT Ethernet switch

The ROOT Ethernet switch is the master switch of the RSTP reconfiguration function: ■ only one ROOT Ethernet switch is required per Ethernet network, in the main network loop.

a Sepam unit should not be the ROOT Ethernet switch of the network.

Example of Sepam units connected in a star configuration

Available Sepam data Selection table

			DNP3				870-5- 1			61850		
	series 20	series 40	series 80	series 20	series 40	series 80	series 20	series 40	series 80	ECI85	0 ⁽¹⁾ series 40	serie: 80
Data transmitted f						00	20		00			
Metering and diagnosis												
leasurements											•	
Energy										1.1		
Network diagnosis										(2)	(2)	(2)
Machine diagnosis	-		-			-				(2)	(2)	(2)
Switchgear diagnosis	-	-	-		-	-				(2)	(2)	(2)
Sepam diagnosis	-	-	-							(2)	(2)	(2)
ogipam counters			-	_						_		-
Remote indications												
Alarms and internal status										(2)	(2)	(2)
conditions	-	-	-		-	-	-	-	-	(2)	(2)	(2)
.ogic inputs										(2)	(2)	(2)
ogic outputs										(2)	(2)	(2)
ogic equations		-	-							(-)	(2)	(2)
Data transmitted f	rom th			Sonam								
		e super	visor to			_	-	-	_	(0)	(0)	(0)
Pulse-type remote-control orders, in direct mode	•	-		<u>.</u>	•		-	-	•	(2)	(2)	(2)
Pulse-type remote-control orders, in "Select Before Operate" mode	•	•	•	Ľ.,	•	•				(2)	(2)	(2)
Aaintained remote-control orders (for Logipam)												
Remote control security										-		
Data accessible vi Time-tagging Time-tagged events	•	-	•	•				-	-	•	•	•
Jnsollicited events												
Time-setting and synchronization	-					•	•	•	•	•	•	
Remote setting												
Selection of the protection-	-	•	•	•	•	•	•	•	•	•		•
Reading/writing of protection settings	•	•	•									
Reading of general parameters	-											
Reading/writing of analog butput (MSA141)	•	•	•	•	•	•				-	•	•
Network diagnosis												
ransfer of disturbance- ecording data	•	•	•	•	•	•	•	•	•	•	•	•
ripping contexts				-							(2)	(2)
Dut-of-sync context			-						_		(2)	(2)
Miscellaneous			_								(4)	(~)
							-	-				
lentification of Sepam				-	-	-	-	-	-			-
Data exchanged b Protection data	etweer	Sepan	units									
ogic discrimination												
ntertripping												-
.oad shedding (motor				-								
ipplication only)												-
hibit closing												-
Viscellaneous												
dentification of Sepam												
astration of Ocpath												

To or from the Sepam series 80, series 40 and series 20 units, depending on the case.
 Depending on the modelling of the IEC 61850 logic nodes.

Description

Data transmitted from Sepam to the supervisor

Metering and diagnosis

The values measured by Sepam that may be remote accessed are divided into the following categories:

- measurements: currents, voltages, frequency, power, temperatures, etc.
- energy: calculated or pulse-type energy counters
- network diagnosis: phase displacement, tripping currents, unbalance ratio, etc.
- machine diagnosis: temperature rise, motor starting time, remaining operating time before overload tripping, waiting time after tripping, etc.

■ switchgear diagnosis: cumulative breaking current, operating time and number of operations, circuit breaker charging time, etc.

- Sepam diagnosis: partial or major fault, etc.
- Logipam counters.

Remote indications

The logic-state information that may be remote accessed are divided into the following categories:

- alarms and internal status conditions
- status of logic inputs
- status of logic outputs
- status of nine LEDs on the front panel of Sepam
- status of logic-equation output bits.

Alarms and internal status conditions

The alarms and internal status conditions are remote indications (TS) pre-assigned to protection and control functions.

Remote indications depend on the type of Sepam and can be re-assigned by Logipam.

The remote indications that can be accessed via the communication link include:

- all protection-function alarms
- monitoring-function alarms: CT or VT fault, control fault
- Sepam status data:
- □ Sepam not reset
- □ remote setting inhibited, remote-control orders inhibited
- status data on the following functions:
- □ recloser: in service / inhibited, reclosing in progress / successful, permanent trip
- □ disturbance recording: records inhibited / stored.

Data transmitted from the supervisor to Sepam

Pulse-type remote-control orders

Pulse-type remote-control orders (TC) may be carried out in two modes (selected by parameter setting):

- direct mode
- confirmed SBO (select before operate) mode.

Remote-control orders are pre-assigned to metering, protection and control functions and depend on the type of Sepam.

They are used for the following, in particular:

- to control breaking device opening and closing
- to reset Sepam and initialize peak-demand measurements
- to select the active group of settings by enabling group A or B
- to inhibit or enable the following functions: recloser, thermal overload protection, disturbance recording.

Remote-control orders can be re-assigned by Logipam.

Remote-control security

Transmission of Sepam series 80 remote controls and settings over a Modbus S-LAN can be password protected.

Description

IEC 61850 logical nodes Sepam supports IEC 61850 logical nodes as indicated in the following table. Note that the actual instantiation of each logical node depends on the application.

Nodes		Sepam series 20 ^{Busbar}	Sepam series 20 ^{Others}	Sepam series 40	Sepam series 80
L: syster	n logical nodes				
PHD	Physical device information	•	•	•	•
LN0	Logical node zero				
P: logica	I nodes for protection functions				
DIF	Differential				•
DOP	Directional overpower				
DUP	Directional underpower				
FRC	Rate of change of frequency				
HIZ	Ground detector				
MRI	Motor restart inhibition				
MSS	Motor starting time supervision				
PAM	Phase angle measuring				
SDE	Sensitive directional earth fault				
тос	Time overcurrent				
TOF	Overfrequency				
тоу	Overvoltage				
TRC	Protection trip conditioning				
TTR	Thermal overload				
TUC	Undercurrent				
TUV	Undervoltage				
TUF	Underfrequency				
VOC	Voltage controlled time overcurrent				
VPH	Volts per Hz				
ZSU	Zero speed or underspeed				
R: logica	I nodes for protection related functions				
BRF	Breaker failure		•	•	•
RFLO	Fault locator				
RREC	Autoreclosing				
RDRE	Disturbance recorder function				
RSYN	Synchronism-check or synchronizing				
C: logica	I nodes for control				
SWI	Switch controller	•	•	•	•
GG: loaid	cal nodes for generic references				
GIO	Generic process I/O	•	•		•
	al nodes for metering and measurement				
MAI	Harmonics or interharmonics				•
/HAN	Non phase related harmonics				
MMTR	Metering	•			
IMXU	Measurement	•			
ISQI	Sequence and imbalance				
ISTA	Metering statistics				
SIML	Insulation madium supervision				
	I nodes for switchgear				
CBR	Circuit breaker	•		•	•
			-	-	-
-	I nodes for further power system equipment				-
CAP	Capacitor bank				

Description

Time-tagging

Time-tagged events

The time-tagging function assigns a date and precise time to status changes (events) so that they can be accurately organized over time.

- Sepam systematically time-tags the following events:
- status changes of all logic inputs
- status changes of all remote indications (TS alarms and internal status conditions).

Each event is time-tagged to within one millisecond.

The number of stacks of time-tagged events managed by Sepam on each communication port and the volume of each stack in terms of the numbers of events depend on the communication protocol used.

	Modbus RTU	DNP3	IEC 60870-5-103	IEC 61850
Number of event stacks for each Sepam communication port	2	1	1	Depending on configuration
Number of events per stack	64	100	100	Depending on configuration

Whatever the communication protocol used, Modbus RTU, DNP3, IEC 60870-5-103 or IEC 61850 events may be used by a remote monitoring and control system for data logging and histories, for example.

Unsollicited events

Using the DNP3 and IEC 61850 protocols, Sepam can spontaneously transmit timetagged events to the supervisor. The transmission of unsollicited events must be activated during setup.

Time-setting and synchronization

The Sepam internal clock manages the date and time.

- Time-setting is possible:
- via the Sepam display
- using the SFT2841 software
- via the communication link.

To ensure long-term time stability or to coordinate a number of devices, Sepam units can be synchronized:

- by an external pulse to a dedicated logic input
- via the communication link.

Description

Remote setting

Sepam parameter and protection settings

- The following remote-setting functions are available:
- selection of the protection-setting group
- reading of general parameters
- reading of protection settings (remote reading)
- writing of protection settings (remote setting).

The writing of protection settings may be inhibited by parameter setting.

S-LAN and E-LAN networks

The availability of remote-setting functions over the S-LAN depends on the communication protocol used.

All remote-setting functions are available over the E-LAN using the SFT2841 software.

Other data accessible via special functions

Network diagnosis

The network diagnostic information recorded in files by Sepam can also be transmitted over the communication link:

- disturbance-recording records in COMTRADE format
- tripping contexts
- Out-of-sync context.

Identification of Sepam

The identification function enables the supervisor to clearly identify the device connected to the S-LAN, based on the following elements of information:

- manufacturer identification
- Sepam type.
- This function is available for all Sepam relays, whatever the protocol used.

schneider-electric.com

CAD software and tools

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.

Last but not least, they optimise use of our products while also complying with standards and proper procedures.

50

Sepam series 20 Sepam series 40 Sepam series 80

Sepam series 20 and Sepam series 40

Range description	3
Sepam Series 20 - Sepam series 40	52
Selection table Sepam series 20	52
Selection table Sepam series 40	53
Sensor inputs	54
General settings	55
Metering and diagnosis	56
Description	56
Characteristics	59
Protection	61
Description	61
Main characteristics	64
Setting ranges	65
Control and monitoring	68
Description	68
Description of predefined functions	69
Adaptation of predefined functions using the SFT2841 software	71
Characteristics	72
Base unit	72
Presentation	72
Dimensions	75
Description	76
Technical characteristics	78
Environmental characteristics	79
Connection diagrams	80
Base unit	80
Sepam series 20	80
Sepam series 40	81
Other phase current input connection schemes	82
Other residual current input connection schemes	83
Voltage inputs	85
Sepam series 20	85
Sepam series 40	86
Sepam series 80	89
Additional modules and accessories	143
Order form	223
Index	233

Selection table Sepam series 20

		Substation		Transfo	rmer	Motor	Busbar		
Protection	ANSI code	S1051a	S24 ⁽⁴⁾	T20	T24 ⁽⁴⁾	MOLOI M20	Busbar B21 ⁽³⁾	B22	
			-	-			DZI (7	DZZ	
Phase overcurrent	50/51	4	4	4	4	4			
Phase overcurrent cold load pick-up/blocking Earth fault / Sensitive earth fault	CLPU 50/51 50N/51N	4	4	4	4	4			
	50G/51G	-	7	7	-	-			
Earth fault cold load pick-up/blocking	CLPU 50/51N		1		1				
Breaker failure	50BF		1		1				
Negative sequence / unbalance	46	1	1	1	1	1			
Thermal overload	49RMS			2	2	2			
Phase undercurrent	37					1			
Excessive starting time, locked rotor	48/51LR/14					1			
Starts per hour	66					1			
Positive sequence undervoltage	27D/47						2	2	
Remanent undervoltage	27R						1	1	
Phase-to-phase undervoltage	27						2	2	
Phase-to-neutral undervoltage	27S						1	1	
Phase-to-phase overvoltage	59			_			2	2	
Neutral voltage displacement	59N						2	2	
Dverfrequency	81H						1	1	
Jnderfrequency	81L			_			2	2	
Rate of change of frequency	81R							1	
Recloser (4 cycles)	79								
hermostat / Buchholz	26/63								
emperature monitoring (8 RTDs)	38/49T								
Metering									
Phase current I1, I2, I3 RMS, residual current I	0	•							
Demand current I1, I2, I3, peak demand currer		•		•					
/oltage U21, U32, U13, V1, V2, V3, residual v	oltage V0								
Positive sequence voltage Vd / rotation direction	on								
Frequency									
Temperature									
Network and machine diagno	sis								
Tripping current TripI1, TripI2, TripI3, TripI0			-	•					
Jnbalance ratio / negative sequence current li									
Disturbance recording				•			-		
Thermal capacity used				•					
Remaining operating time before overload trip	ping								
Naiting time after overload tripping									
Running hours counter / operating time						•			
Starting current and time									
Start inhibit time									
Number of starts before inhibition							_		
Cable arcing fault detection			-				•	•	
Switchgear diagnosis									
Cumulative breaking current		•							
Trip circuit supervision									
Number of operations, operating time, charging	-								
Control and monitoring	ANSI code								
Circuit breaker / contactor control ⁽¹⁾	94/69								
atching / acknowledgement	86			•			•		
ogic discrimination	68								
Switching of groups of settings		(2)	(2)	(2)	(2)	(2)			
Innunciation	30	-	•		•		•		
Additional modules									
temperature sensor inputs - MET148-2 mod	ile.								
low level analog output - MSA141 module									
ogic inputs/outputs -			-						
_ogic inputs/outputs - MES114/MES114E/MES114F (10I/4O) modul	е				ш				

standard, □ according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options.
 (1) For shunt trip unit or undervoltage trip unit.
 (2) Exclusive choice between logic discrimination and switching from one 2-relay group of settings to another 2-relay group.
 (3) Performs Sepam B20 functions.
 (4) Applications S24 and T24 perform the functions of applications S23 and T23 respectively.

Sepam series 20 Sepam series 40

Selection table Sepam series 40

			statior							Tran	sform	er		Motor	Generat
Protection	ANSI code	S40	S50	S41	S51	S42	S52	S43	S53	T40	T50	T42	T52	M41	G40
nase overcurrent	50/51	4	4	4	4	4	4	4	4	4	4	4	4	4	4
ocking	CLPU 50/51		4		4		4		4		4		4		
Itage-restrained overcurrent rth fault / Sensitive earth fault	50V/51V 50N/51N	4	4	4	4	4	4	4	4	4	4	4	4	4	4
rth fault cold load pick-up / blocking	50G/51G CLPU 50/51N		4		4		4		4	-	4		4		
eaker failure	50BF	1	1	1	1	1	1	1	1	1	1	1	1	1	1
gative sequence / unbalance	46	2	2	2	2	2	2	2	2	2	2	2	2	2	2
rectional phase overcurrent	67					2	2					2	2		
ectional earth fault	67N/67NC			2	2	2	2	2	2			2		2	
rectional active overpower	32P			1	1	1	1	1	1					1	1
rectional reactive overpower	32Q/40													1	1
ermal overload	49RMS									2	2	2	2	2	2
ase undercurrent	37		_							_				1	
cessive starting time, locked rotor	48/51LR/14													1	
arts per hour	66									_				1	
ositive sequence undervoltage	27D									-				1	
ndervoltage (3)	27R 27/27S	2	2	2	2	2	2			2	2	2	2	2	2
rervoltage (3)	59	2	2	2	2	2	2			2	2	2	2	2	2
eutral voltage displacement		2	2	2	2	2	2			2	2	2	2	2	2
gative sequence overvoltage	47	1	1	1	1	1	1			1	1	1	1	1	1
erfrequency	81H	2	2	2	2	2	2			2	2	2	2	2	2
derfrequency	81L	4	4	4	4	4	4			4	4	4	4	4	4
ecloser (4 cycles)	79									· · · ·			•		
mperature monitoring (8 or 16											_	_	_	-	-
Ds)	38/49T														
ermostat / Buchholz	26/63														
oken conductor	46BC		1		1		1		1		1		1		
Vetering															
ase current I1, I2, I3 RMS, residual	current I0														
emand current 11, 12, 13, peak deman		-													
12, IM3		•	•	•	-	-	•	•	•		•		•	•	•
Itage U21, U32, U13, V1, V2, V3, re	sidual voltage V0									•					
sitive sequence voltage Vd / rotation	n direction		•		•				•	•	•		•	•	
egative sequence voltage Vi		-	-	_	-	-	-	-	-		-	-	-	-	-
equency															
ctive, reactive and apparent power P															
ak demand power PM, QM, power f lculated active and reactive energy		-	-	-	-		-	-	-	÷	-	-	-	-	-
tive and reactive energy by pulse co															
W.h, ±.varh) mperature															
Network and machine dia	gnosis	_	_	_	_	_	_	_	_	-	_	_	_	_	-
ipping context	via IO		-	-	-	-	-	-	-	÷	-	-	-		
ipping current TripI1, TripI2, TripI3, T		-	-	-		-	-	-	-	÷		-	-		-
nbalance ratio / negative sequence c nase displacement Φ0, Φ1, Φ2, Φ3	urrentii	-	-	-	-		-	-	-	-	-	-	+	-	
sturbance recording		_	-												_
		•	-	-	-	-	-	-	•	÷	-	-	-	-	-
ermal capacity used emaining operating time before over	oad tripping									÷		-		-	
aiting time after overload tripping	oau mpping									÷	-	-			-
unning hours counter / operating time	2									10	-	-	-		
arting current and time	<i>.</i>										-		-		-
able arcing fault detection										•					
ault locator		_		_		-	-	-	-		-		-	-	-
art inhibit time, number of starts befo	ore inhibition		_		-		-		_						
Switchgear diagnosis														-	
imulative breaking current								-		•					
p circuit supervision															
mber of operations, operating time,	charging time														
/VT supervision	60FL														
Control and monitoring	ANSI code				-	-	-	-	-	-	-	-	-	-	-
							-	-	-	-	-	-	-		-
cuit breaker / contactor control (1)	94/69	-	-	-	-	-	-	-	-	÷	-	-	-		
tching / acknowledgement	86											-	-		
gic discrimination /itching of groups of settings	68														
ritching of groups of settings	30	-	-	-	-	-	-	-	-	÷	-	-	-	-	-
nunciation gic equation editor	50	-	-		-	-	-	-	-	÷	-	-	-		-
		-			-	-		-		•	-	•			
Additional modules															
emperature sensor inputs - MET148		_													
ow level analog output - MSA141 mo	baule														
gic inputs/outputs -) module														
S114/MES114E/MES114F (101/40															
ES114/MES114E/MES114F (10I/40 ommunication interface - ACE949-2,															

a standard, □ according to parameter setting and MES114/MES114E/MES114F or MET148-2 input/output module options.
(1) For shunt trip unit or undervoltage trip unit.
(2) 2 modules possible.
(3) Exclusive choice, phase-to-neutral voltage or phase-to-phase voltage for each of the 2 relays.

Sensor inputs

Each Sepam series 20 or Sepam series 40 has analog inputs that are connected to the measurement sensors required for the application.

Sepam series 20 sensor inputs

	S20, S24	T20, T24, M20	B21, B22
Phase current inputs	3	3	0
Residual current input	1	1	0
Phase voltage inputs	0	0	3
Residual voltage input	0	0	1
Temperature inputs (on MET148-2 module)	0	8	0

Т

DE88090

2

In

lb

ln0

H

Sepam M41 sensor inputs.

Sepam series 40 sensor inputs

		, S41, , S43	T40,	T42, M41, G40
Phase current inputs	3		3	
Residual current input	1		1	
Phase voltage inputs	2	3	2	3
Residual voltage input	1	0	1	0
Temperature inputs (on MET148-2 module)	0	0		

Each Sepam series 20 or the measurement sensor Sepam Series

31

10

🔶 T1 ... T8

MET

General settings

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	eral settings	Selection	Sepam series 20	Sepam series 40
In	Rated phase current	2 or 3 CT 1 A / 5 A	1 A to 6250 A	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A ⁽¹⁾	25 A to 3150 A ⁽¹⁾
lb	Base current, according to rated power of equipment		0.4 to 1.3 In	0.2 to 1.3 In
In0	Rated residual current	Sum of 3 phase currents	See In rated phase current	See In rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating	2A, 5A or 20A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A	1 A to 6250 A (In0 = In)
		1 A/5 A CT + CSH30 interposing ring CT Sensitivity x10	-	1 A to 6250 A (In0 = In/10)
		Core balance CT + ACE990 (the core balance CT ratio 1/n must be such that $50 \le n \le 1500$)	According to current monitored and use of ACE990	According to current monitored and use of ACE990
Unp	Rated primary phase-to-phase voltage (Vnp: rated primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		220 V to 250 kV	220 V to 250 kV
Uns	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 V to 230 V in steps of 1 V	90 V to 230 V in steps of 1 V
		2 VTs: U21, U32	90 V to 120 V in steps of 1 V	90 V to 120 V in steps of 1 V
		1 VT: V1	90 V to 120 V in steps of 1 V	90 V to 120 V in steps of 1 V
Uns0	Secondary zero sequence voltage for primary zero sequence voltage Unp/ $\sqrt{3}$		Uns/3 or Uns/√3	Uns/3 or Uns/ $\sqrt{3}$
	Rated frequency		50 Hz or 60 Hz	50 Hz or 60 Hz
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 mn	5, 10, 15, 30, 60 mn
	Pulse-type accumulated energy meter	Increments active energy	-	0.1 kW.h to 5 MW.h
		Increments reactive energy	-	0.1 kvar.h to 5 Mvar.h

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Metering and diagnosis

Description

Metering

Sepam is a precision metering unit.

All the metering and diagnosis data used for commissioning and required for the operation and maintenance of your equipment are available locally or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13. Different types of sensors may be used to meter phase current:

- 1 A or 5 A current transformers
- LPCT type current sensors.

Residual current

Two residual current values are available depending on the type of Sepam and sensors connected to it:

- residual currents IOS, calculated by the vector sum of the 3 phase currents
- measured residual current I0.
- Different types of sensors may be used to measure residual current:
- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer
- any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

■ demand current is calculated over an adjustable period of 5 to 60 minutes

peak demand current is the greatest demand current and indicates the current drawn by peak loads.

Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3
- phase-to-phase voltages U21, U32, U13
- residual voltage V0
- positive sequence voltage Vd and negative sequence voltage Vi
- frequency f.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- power factor (cos φ).

Power calculations is based on the 2 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current.

The peak demand powers may be cleared.

Energy

 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions
 1 to 4 additional accumulated energy meters for the acquisition of active or reactive energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Metering and diagnosis

Description

Machine diagnosis

assistance

- Sepam assists facility managers by providing:
- data on the operation of their machines
- predictive data to optimize process management
 useful data to facilitate protection function setting
- and implementation.

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function. Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function.

The time is used by facility managers to optimize process management in real time by deciding to:

interrupt according to procedures

■ continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function.

Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time Equipment is considered to be running whenever a

phase current is over 0.1 lb.

Cumulative operating time is given in hours.

Motor starting / overload current and time

- A motor is considered to be starting or overloaded when a phase current is over
- 1.2 lb. For each start / overload, Sepam stores:
- maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V0, Vi, Vd, f, P and Q values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3, indicating the degree of unbalance in the power supplied to the protected equipment.

Phase displacement

■ phase displacement Φ1, Φ2, Φ3 between phase currents I1, I2, I3 and voltages V1, V2, V3 respectively

phase displacement Φ0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs
- Iogic data: pick-up, …

Characteristics	Sepam series 20	Sepam series 40
Number of recordings in COMTRADE format	2	Adjustable from 1 to 19
Total duration of a recording	86 periods (1.72 s at 50 Hz, 1.43 s at 60 Hz)	Adjustable from 1 to 10 s. The total of all the records plus one must not be more than 20 s at 50 Hz and 16 s at 60 Hz
Number of samples per period	12	12
Duration of recording prior to occurrence of the event	Adjustable from 0 to 86 periods	Adjustable from 0 to 99 periods
Recorded data	 currents or voltages logic inputs pick up logic output O1. 	 currents or voltages logic inputs pick up logic outputs O1 to O4.

Fault location

The network diagnosis function 21FL calculates the distance to a located fault in a medium voltage network. It is associated with the following protection functions:

- Single-phase fault 50N/51N or 67N,
- Multi-phase fault 50/51 or 67.

Only units with protection functions configured for circuit breaker tripping activate the Fault locator function.

The fault resistance is also calculated. The results of the calculation, as well as information on the type of fault located and the faulty phases are displayed and saved in the tripping context. The fault distance can be calculated in miles or kilometers. The 21FL function is designed to operate on an incoming feeder on a network with several feeders.

Data on the last five faults is saved.

Metering and diagnosis

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

detect internal failures that may cause nuisance tripping or failed fault tripping

put Sepam in fail-safe position to avoid any unwanted operation

alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored: major failures: Sepam shutdown (to fail-safe position).

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

minor failures: downgraded Sepam operation. Sepam's main functions are operational and equipment protection is ensured.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly. The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Switchgear diagnosis assistance

- Switchgear diagnosis data give facility managers information on:
- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions. The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection
- Sepam analog inputs.
- Monitoring includes:
- consistency checking of currents and voltages measured
- acquisition of phase or residual voltage transformer protection fuse blown contacts.

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.

ANSI 74 - Trip circuit supervision

- To detect trip circuit circuit failures, Sepam monitors:
- shunt trip coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.
- The trip circuit is only supervised when connected as shown below.

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring.

Cumulative breaking current

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current. Cumulative breaking current is given in (kA)².

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time

Used to assess the condition of the breaking device operating mechanism.

Sepam series 20 Sepam series 40

Metering and diagnosis Characteristics

Functions	Measurement	Accuracy ⁽¹⁾	Accuracy ⁽¹⁾	MSA141	Saving
	range	Sepam series 20	Sepam series 40		
Metering					
Phase current	0.1 to 40 ln ⁽³⁾	±1 %	±0.5 %		
Residual current Calculated	0.1 to 40 In	±1 %	±1 %		
Measured	0.1 to 20 In0	±1 %	±1 %		
Demand current	0.1 to 40 In	±1%	±0.5 %		
Peak demand current	0.1 to 40 In	±1 %	±0.5 %		
hase-to-phase voltage	0.05 to 1.2 Unp	±1 %	±0.5 %		
hase-to-neutral voltage	0.05 to 1.2 Vnp	±1%	±0.5 %		
Residual voltage	0.015 to 3 Vnp	±1%	±1%		
Positive sequence voltage	0.05 to 1.2 Vnp	±5 %	±2 %		
legative sequence voltage	0.05 to 1.2 Vnp	-	±2 %		1
requency Sepam series 20	50 ±5 Hz or 60 ±5 Hz	±0.05 Hz	-		
requency Sepam series 40	25 to 65 Hz	-	±0.02 Hz		
ctive power	0.015 Sn ⁽²⁾ to 999 MW	-	±1%		1
Reactive power	0.015 Sn ⁽²⁾ to 999 Mvar	-	±1%		
pparent power	0.015 Sn ⁽²⁾ to 999 MVA	-	±1 %		+
Peak demand active power	0.015 Sn ⁽²⁾ to 999 MW	-	±1%	-	
Peak demand reactive power	0.015 Sn ⁽²⁾ to 999 Mvar	-	±1 %		-
Power factor	-1 to +1 (CAP/IND)	-	±1 %		
Calculated active energy	0 to 2.1.10 ⁸ MW.h	-	±1 % ±1 digit		-
	0 to 2.1.10 ⁸ Mvar.h	-			
Calculated reactive energy		- ±1 °C from +20 to +140 °C	±1 % ±1 digit ±1 °C from +20 to +140 °C		
emperature	-30 to +200 °C or -22 to +392 °F	±1 C 10111+2010+140 C	±1 C 10111+20 10+140 C	-	
Network diagnosis assistance				•	
ripping context					
Phase tripping current	0.1 to 40 In	±5 %	±5 %		
Earth fault tripping current	0.1 to 20 In0	±5 %	±5 %		
legative sequence / unbalance	10 to 500 % of Ib	±2 %	±2 %		
Phase displacement $\alpha 0$ (between V0 and I0)	0 to 359°	-	±2°		
Phase displacement Φ1, Φ2, Φ3 between V and I)	0 to 359°	-	±2°		
Machine operating assistance					· · · · · ·
Thermal capacity used	0 to 800 % (100 % for I phase = Ib)	±1 %	±1 %	-	
Remaining operating time before overload	0 to 999 mn	±1 mn	±1 mn		
Vaiting time after overload tripping	0 to 999 mn	±1 mn	±1 mn		
Running hours counter / operating time	0 to 65535 hours	±1 % or ±0.5 h	±1 % or ±0.5 h		
Starting current	S20 : 0,5 lb to 24 ln S40 : 1,2 lb to 24 ln	±5 %	±5 %		
tarting time	0 to 300 s	±300 ms	±300 ms		
lumber of starts before inhibition	0 to 60	1	1		
tart inhibit time	0 to 360 mn	±1 mn	±1 mn		
cooling time constant	5 to 600 mn	-	±5 mn		1
Switchgear diagnosis assistance					1
cumulative breaking current	0 to 65535 kA ²	±10 %	±10 %	1	
		1	1		
lumber of operations	0 to 4.10 ⁹				
operating time	20 to 100 ms	±1 ms	±1 ms		
Charging time	1 to 20 s	±0.5 s	±0.5 s		

■ available on MSA141 analog output module, according to setup. □ saved in the event of auxiliary supply outage. (1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cos $\varphi > 0.8$. (2) Sn: apparent power, = $\sqrt{3}$.Unp.In. (3) Measurement up to 0.02 In for information purpose.

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction

■ definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)

with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault

with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction. 3 types of operation:

- type 1: the protection function uses the projection of the I0 vector
- type 2: the protection function uses the I0 vector magnitude with half-plane tripping zone

■ type 3: the protection function uses the I0 vector magnitude with angular sector tripping zone

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

- Type 1 characteristics ■ 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold

with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

Type 2 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- choice of tripping direction
- with or without timer hold.

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

This protection function complies with the Enel DK5600 specification.

Type 3 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Protection Description

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection, sensitive to the highest phase current measured.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16

standardized IDMT curves)

■ with or without timer hold. The protection incorporates a harmonic 2 restraint which can be used to set the protection Is set point close to the CT rated current In, including when a transformer closes. This restraint can be activated by parameter setting. The harmonic 2 restraint is valid as long as the current is less than half the minimum short-circuit current Isc of the network downstream of the protection.

With Sepam series 40, tripping can be confirmed or unconfirmed, according to parameter setting:

unconfirmed tripping: standard

■ tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant 2-phase short-circuits

■ tripping confirmed by undervoltage protection (ANSI 27, unit 1), as backup for phase-to-phase shortcircuits in networks with low short-circuit power.

ANSI CLPU 50/51 - Phase overcurrent cold load pick-up/blocking (Cold Load Pick-Up I)

The Cold Load Pick-Up I or CLPU 50/51 function avoids nuisance tripping of the phase overcurrent protection (ANSI 50/51), during energization after a long outage. Depending on the installation characteristics, these operations can actually generate transient inrush currents likely to exceed the protection set points. These transient currents may be due to:

- the power transformer magnetizing currents,
- the motor starting currents,

■ the simultaneous resetting of all the loads in the installation (air conditioning, heating, etc.)

In principle, the protection settings should be defined so as to avoid tripping due to these transient currents. However, if these settings result in inadequate sensitivity levels or delays that are too long, the CLPU 50/51 function is used to increase or inhibit set points temporarily after energization.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values: ANSI 50N/51N: residual current calculated or measured by 3 phase current sensors

ANSI 50G/51G: residual current measured directly by a specific sensor.

- Characteristics
- 2 groups of settings
- Definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold

second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI CLPU 50N/51N- Earth fault cold load pick-up/blocking (Cold Load Pick-Up I0)

The Cold Load Pick-Up I0 or ĆLPU 50N/51N function avoids nuisance tripping of the earth fault protection (ANSI 50N/51N) during energization after a long outage. Depending on the installation characteristics, such operations can actually generate transient inrush currents. If the residual current measurement is based on the sum of the 3 phase CTs, the aperiodic component of these transient currents can result in saturation of the phase CTs. This can lead to measurement of an incorrect residual current likely to exceed the protection set points. These transient currents are essentially due to:

■ the power transformer magnetizing currents,

the motor starting currents.

In principle, the protection settings should be defined so as to avoid tripping due to these transient currents. However, if these settings result in inadequate sensitivity levels or delays that are too long, the CLPU 50N/51N function is used to increase or inhibit set points temporarily after energization.

If the residual current is measured by a correctly installed CT, there is less risk of measuring an incorrect residual current. In this case, there is no need to use the CLPU 50N/51N function.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current:

■ sensitive protection to detect 2-phase faults at the ends of long lines

protection of equipment against temperature build-up, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance.

Characteristics

- Sepam series 20:
- $\hfill\square$ 1 definite time (DT) curve
- □ 1 specific Schneider IDMT curve.
- Sepam series 40:
- □ 1 definite time (DT) curve
- □ 7 IDMT curves: 3 IEC curves, 3 IEEE curves and 1 specific Schneider curve.

ANSI 46BC - Broken conductor detection

Broken conductor detection protection indicates an open phase condition on the circuit in a medium voltage radial network.

This may be caused by one of the following:

- broken conductor in contact with the ground at the source side
- broken conductor in contact with the ground at the load side
- open circuit (conductor not in contact with the ground) caused by: □ broken conductor
- □ blown fuse

□ circuit breaker pole failure.

Protection Description

Current protection functions (continued)

ANSI 49RMS - Thermal overload

Protection against thermal damage caused by overloads on machines (transformers, motors or generators).

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance. The protection may be inhibited by a logic input when required by process control conditions.

Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point

■ adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves

equipment heating and cooling time constants. With Sepam series 40, the cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semi-permanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed.

Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

■ 1 to 4 reclosing cycles, each cycle has an adjustable dead time

■ adjustable, independent reclaim time and safety time until recloser ready time delays

■ cycle activation linked to instantaneous or timedelayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting

■ inhibition/locking out of recloser by logic input.

Directional power protection functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

- active overpower protection to detect overloads and allow load shedding
- reverse active power protection:
- □ against generators running like motors when the generators consume active power

 against motors running like generators when the motors supply active power.

ANSI 32Q/40 - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines:

■ reactive overpower protection for motors which consume more reactive power with field loss

■ reverse reactive overpower protection for generators which consume reactive power with field loss.

Machine protection functions

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR/14 - Locked rotor / excessive starting time

Protection of motors against overheating caused by: ■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

- locked rotor due to motor load (e.g. crusher):
- □ in normal operation, after a normal start

□ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

□ starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)

■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

- instantaneous or time-delayed tripping
- definite time (DT) or IDMT curve (choice of 16 standardized IDMT curves)
- with or without timer hold.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.

Characteristics

- Sepam series 20: 8 Pt100, NI100 or Ni120 type RTDs
- Sepam series 40: 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Protection Description

Voltage protection functions Frequency protection functions

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase voltage (Sepam series 20 and Sepam series 40) or phase-to-neutral voltage (Sepem series 40 only), each voltage being monitored separately.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage in isolated neutral systems.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

- protect the generators from a reconnection without checking synchronization
 avoid supplying loads outside the installation
- avoid supplying loads outside the installation.

Load shedding

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

either accelerate shedding in the event of a large overload

• or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Protection Main characteristics

Current IDMT tripping curves

- Multiple IDMT tripping curves are offered, to cover most applications:
- IEC curves (SIT, VIT/LTI, EIT)
- IEEE curves (MI, VI, EI)
- usual curves (UIT, RI, IAC).

The curve equations are given page 102.

Setting of IDMT tripping curves, time delay T or TMS factor

The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x ls
- TMS factor, factor shown as T/b (see curve equation page 102).

Timer hold

- The adjustable timer hold T1 is used for:
- detection of restriking faults (DT curve)
- coordination with electromechanical relays (IDMT curve).
 Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link.

Example of use: normal / backup mode network

group A for network protection in normal mode, when the network is supplied by the utility

group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

■ transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)

motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Summary table

Characteristics	Protection functions
2 groups of settings A and B	50/51, 50N/51N, 67, 67N/67NC
2 groups of settings, operating modes 1 and 2	49RMS Machine
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2

Detection of restriking faults with adjustable timer hold.

64

Protection Setting ranges

Functions	Settings			Time delays
ANSI 21FL - Fault locator				
Time to establish healthy state	1s to 99 mn			0,1 s to 300 s
Percentage of cable	0 to 30 %			
Distance unit Km or mile	Km or mile			
Direct line resistance	0,001 Ω/Km to 10 Ω/Km			
Direct line reactance	0,001 Ω/Km to 10 Ω/Km			
Direct cable resistance	0,001 Ω/Km to 10 Ω/Km			
Direct cable reactance	0,001 Ω/Km to 10 Ω/Km			
Zero sequence line resistance	0,001 Ω/Km to 10 Ω/Km			
Zero sequence line reactance	$0.001 \Omega/\text{Km}$ to $10 \Omega/\text{Km}$			
Zero sequence cable resistance	0,001 Ω/Km to 10 Ω/Km			
Zero sequence cable reactance	0,001 Ω/Km to 10 Ω/Km			
ANSI 27 - Phase-to-phase under	,			
	5 to 120 % of Unp			0.05 s to 300 s
ANSI 27D/47 - Positive sequence	·			
Autor 2. 2.4. I contro dequence	5 to 60 % of Unp			0.05 s to 300 s
ANSI 27R - Remanent undervolta	•			0.000000000
ANOTZTR - Remainent unuervoit	-			0.05 s to 300 s
ANGLOZO Dess to manifestant	5 to 120 % of Unp			0.00 \$ 10 300 \$
ANSI 27S - Phase-to-neutral und	•			0.05 - 1- 200
	5 to 120 % of Vnp			0.05 s to 300 s
ANSI 32P - Directional active ove	•			
	1 to 120 % of Sn (2)			0.1 s to 300 s
ANSI 32Q/40 - Directional reactive	ve overpower			
	5 to 120 % of Sn (2)			0.1 s to 300 s
ANSI 37 - Phase undercurrent				
	0.15 to 1 lb			0.05 s to 300 s
ANSI 38/49T - Temperature moni	itoring (8 or 16 RTDs)			
Alarm and trip set points	0 to 180 °C (or 32 to 356 °F)			
ANSI 46 - Negative sequence / un				
Definite time	0.1 to 5 lb			0.1 s to 300 s
DMT	0.1 to 0.5 lb (Schneider Electric) 0.1 to	1 lb (IEC_IEEE)		0.1 s to 1 s
Fripping curve	Schneider Electric			0.101010
	IEC: SIT/A, LTI/B, VIT/B, EIT/C ⁽¹⁾			
	IEEE: MI (D), VI (E), EI (F) ⁽¹⁾			
ANSI 46BC - Broken Conductor				
i/ld set point	10 to 100 %			0.15 s to 300 s
ANSI 47 - Negative sequence ov				0.133103003
ANSI 47 - Negative sequence ov	•			0.05 s to 300 s
	1 to 50 % of Unp			0.05 \$ 10 300 \$
ANSI 48/51LR/14 - Excessive sta	•	OT dealer in		0.5 . 1. 000
	0.5 lb to 5 lb	ST starting time		0.5 s to 300 s
		LT and LTS time d	-	0.05 s to 300 s
ANSI 49RMS - Thermal overload			Rate 1 and Rate 2	
Accounting for negative sequence compo		0 - 2,25 - 4,5 - 9		
īme constant	Heating	Sepam serie 20	T1: 1 to 120 mn	
		Sepam serie 40	T1: 1 to 600 mn	
	Cooling	Sepam serie 20	T2: 1 to 600 mn	
		Sepam serie 40	T2: 5 to 600 mn	
Narm and tripping set points		50 to 300 % of rate	ed thermal capacity	
Cold curve modification factor		0 to 100 %		
Switching of thermal settings conditions		By logic input		
		By Is set point adj	ustable from 0.25 to 8 lb	
		<u> </u>		

(1) Sepam series 40 only. (2) Sn = $\sqrt{3}$.In.Unp.

2

Protection Setting ranges

Functions	Settings		Time delays
ANSI 50/51 - Phase overcurrent	Cottinge		
ANDI 50/51 - Pilase Overcuiteit	Tripping time delay	Timer hold	
ripping curve	Definite time	DT	
hpping curve	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
ls set point	0.1 to 24 In	Definite time	Inst ; 0.05 s to 300 s
	0.1 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls
Timer hold	Definite time (DT; timer hold)		Inst ; 0.05 s to 300 s
	IDMT (IDMT ; reset time)		0.5 s to 20 s
Confirming ⁽²⁾	None		
	By negative sequence overvoltage		
	By phase-to-phase undervoltage		
Second-harmonic set point	5 to 50 %		
CLPU 50/51 - Phase overcurrent	cold load pick-up/blocking		
ime before activation Tcold			0,1 to 300 s
ick-up threshold CLPUs	10 to 100 % of In		
Blobal action CLPU 50/51	Blocking or multiplication of the set po	oint	
ction on unit x ANSI 50/51	OFF or ON		
ime delay T/x			100 ms to 999 mn
Iultiplying factor M/x	100 to 999 % of Is		
ANSI 50BF - Breaker failure			
	0.045.045		
resence of current	0.2 to 2 ln		
perating time	0.05 s to 300 s		
ANSI 50N/51N or 50G/51G - Eartl			
	Tripping time delay	Timer hold	
Tripping curve	Definite time	DT	
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
s0 set point	0.1 to 15 In0	Definite time	Inst ; 0.05 s to 300 s
	0.1 to 1 In0	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT ; timer hold)		Inst ; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
	· · · ·		
CLPU 50N/51N - Earth fault cold	load pick-up/blocking		
	load pick-up/blocking		0.1 to 300 s
ime before activation Tcold	· · · ·		0,1 to 300 s
ime before activation Tcold ick-up threshold CLPUs	10 to 100 % of In0	oint	0,1 to 300 s
ime before activation Tcold ick-up threshold CLPUs ilobal action CLPU 50N/51N	10 to 100 % of In0 Blocking or multiplication of the set pr	oint	0,1 to 300 s
me before activation Tcold ick-up threshold CLPUs lobal action CLPU 50N/51N ction on unit x ANSI 50N/51N	10 to 100 % of In0	oint	
me before activation Tcold ck-up threshold CLPUs lobal action CLPU 50N/51N ction on unit x ANSI 50N/51N me delay T0/x	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON	oint	0,1 to 300 s 100 ms to 999 mn
me before activation Tcold ck-up threshold CLPUs lobal action CLPU 50N/51N ction on unit x ANSI 50N/51N me delay T0/x ultiplying factor M0/x	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0	oint	
me before activation Tcold ck-up threshold CLPUs obal action CLPU 50N/51N tion on unit x ANSI 50N/51N me delay T0/x ultiplying factor M0/x	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent		
ne before activation Tcold k-up threshold CLPUs obal action CLPU 50N/51N tion on unit x ANSI 50N/51N ne delay T0/x Itiplying factor M0/x .NSI 50V/51V - Voltage-restrain	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay	Timer hold	
me before activation Tcold ck-up threshold CLPUs obal action CLPU 50N/51N tion on unit x ANSI 50N/51N me delay T0/x ultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time	Timer hold DT	
me before activation Tcold ick-up threshold CLPUs lobal action CLPU 50N/51N ction on unit x ANSI 50N/51N me delay T0/x ultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾	Timer hold DT DT	
ime before activation Tcold ick-up threshold CLPUs lobal action CLPU 50N/51N ction on unit x ANSI 50N/51N ime delay T0/x lultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time	Timer hold DT	
ime before activation Tcold Pick-up threshold CLPUs Stobal action CLPU 50N/51N Action on unit x ANSI 50N/51N Time delay T0/x Aultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾	Timer hold DT DT	
CLPU 50N/51N - Earth fault cold ime before activation Tcold vick-up threshold CLPUs Slobal action CLPU 50N/51N action on unit x ANSI 50N/51N ime delay T0/x fultiplying factor M0/x ANSI 50V/51V - Voltage-restraint ripping curve	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾ RI	Timer hold DT DT DT	
ime before activation Tcold Pick-up threshold CLPUs Stobal action CLPU 50N/51N Action on unit x ANSI 50N/51N Time delay T0/x Aultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾ RI IEC: SIT/A, LTI/B, VIT/B, EIT/C	Timer hold DT DT DT DT or IDMT	
ime before activation Tcold Pick-up threshold CLPUs Stobal action CLPU 50N/51N Action on unit x ANSI 50N/51N Time delay T0/x Aultiplying factor M0/x ANSI 50V/51V - Voltage-restraine	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾ RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F)	Timer hold DT DT DT DT or IDMT DT or IDMT	
ime before activation Tcold Pick-up threshold CLPUs Stobal action CLPU 50N/51N action on unit x ANSI 50N/51N Time delay T0/x Aultiplying factor M0/x ANSI 50V/51V - Voltage-restraine ripping curve	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾ RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI	Timer hold DT DT DT DT or IDMT DT or IDMT DT or IDMT	100 ms to 999 mn
ime before activation Tcold ick-up threshold CLPUs ilobal action CLPU 50N/51N ction on unit x ANSI 50N/51N ime delay T0/x lultiplying factor M0/x ANSI 50V/51V - Voltage-restraine ripping curve	10 to 100 % of In0 Blocking or multiplication of the set pr OFF or ON 100 to 999 % of Is0 ed overcurrent Tripping time delay Definite time SIT, LTI, VIT, EIT, UIT ⁽¹⁾ RI IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IAC: I, VI, EI 0.5 to 24 In	Timer hold DT DT DT DT or IDMT DT or IDMT DT or IDMT DT or IDMT Definite time	100 ms to 999 mn Inst ; 0.05 s to 300 s

(1) Tripping as of 1.2 ls. (2) Sepam series 40 only.

Protection Setting ranges

NSI 59 - Overvoltage (L-L ou L-N) 50 to 150 % of Unp (or Vnp) if Uns < 208 V 0.05 s to NSI 59N - Nautral voltage displacement 2 to 80 % of Unp 0.05 s to NSI 65 - Starts per hour 2 to 80 % of Unp 0.05 s to NSI 65 - Starts per hour 1 to 80 Pariod 1 to 60 NSI 65 - To/rectional phase overcurrent Time hold 0 to 80 m Sign 7 - Directional phase overcurrent Time hold 0 to 80 m Pointe time DT 7 Ril DT 7 Ril DT 7 Pointe time DT 7 Ril DT 0 To 10MT LEES: MCI, NUTB, EIT/C DT or 10MT LEES: MCI, NUTB, EIT/C DT or 10MT Ril DEfinite time (DT; timer hold) 10 to 1 to	s	Settings		Time delays	
Solo 160% of Unp (or Vnp) if Uns ≤ 208 V 0.05 s to 50 to 135% of Unp (or Vnp) if Uns ≥ 208 V 0.05 s to NSI 59N - Neutral voltage displacement 2 to 80 % of Unp 0.05 s to NSI 65 - Starts per hour 1 to 60 Period 1 to 6 hr Ints per period 1 to 60 Time held 1 to 6 hr NSI 67 - Directional phase overcurrent Time held 0 to 90 m NSI 67 - Directional phase overcurrent Definite time DT set point Definite time DT set point 0.1 to 24 in DT iEE: NI, UN, VI, EI, EI/FC DT or IDMT 0.1 to 24 in iDMT (00), VI (E), EI (F) DT or IDMT 0.1 to 24 in iDMT (00), VI (E), EI (F) DT or IDMT 0.5 s to 2 at acteristic angle 30°, 45°, 60° 0.5 s to 2 at acteristic angle 4.5°, 60°, 60° 0.5 s to 2 set point 0.1 to 24 in Definite time Inst; 0.0 set point 2.1 to 80 % of Un 0.2 to 80 % of Un 0.5 to 20 s to 200 s set point 2.1 to 24 in Definite time Inst; 0.0 <t< td=""><td></td><td></td><td></td><td></td></t<>					
50 135 % of Unp (or Vnp.) if Uns ≥ 208 V 0,05 s to NSI 59N - Neutral voltage displacement 2 to 80 % of Unp 0.05 s to NSI 56 - Starts per hour 1 to 60 Period 1 to 6 hr insecutive starts 1 to 60 Period 1 to 6 hr nsecutive starts 1 to 60 Period 1 to 6 hr secutive starts 1 to 60 Period 1 to 6 hr nsecutive starts 0 to 90 m NSI 67 - Directional phase overcurrent Timer hold 0 to 90 m Sift, LT, VIT, ET, UTT DT Timer hold DT 1 to 24 in DT or IDMT IEEE: M(D), VITB, ETITC DT or IDMT Inst : 0.0 DMT (IDMT : reset time) 0.5 s to 2 NSI 677/K7KC type 1 - Directional earth fault, according to 10 projection aracteristic angle 30', 45', 60' NSI 677/K7KC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle 45', 0', 15', 30', 45', 00', 90' set point 0 1 to 5 lin0 Definite time Inst : 0.0 Sit 671/K7KC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle 45', 0', 15', 30', 45', 00', 90' Sit 671/K7KC type 2 - Directio		*	08 V	0,05 s to 300 s	
NSI 59N - Neutral voltage displacement 0.05 s to NSI 66 - Starts per hour 10 60 Period 10 6 hr ints per period 10 60 Time between starts 0 to 9 hr NSI 67 - Directional phase overcurrent Time hold 0 to 9 hr security starts 10 60 Time hold 0 to 9 hr NSI 67 - Directional phase overcurrent DT 0 security starts 10 from the delay Time hold 0 NIX (T, VT, ET, UTT***) DT 1 0 1 set point 0.1 to 24 in DT or IDMT 1				0,05 s to 300 s	
2 to 80 % of Unp 0.05 s to NSI 66 - Stats per hour 1 to 60 Period 1 to 6 hr nsecutive starts 1 to 60 Time between starts 0 to 90 m NSI 67 - Directional phase overcurrent Time hold 0 to 90 m pring curve Tripping time delay Time hold 0 to 90 m STI, LT, VI, ET, UT, TUT, TUT, TUT, TUT, TUT, TUT,	leutral voltage displa	1, 1,			
NSI 66 - Starts per hour Ito 60 Period 1 to 6 h rits per period 1 to 60 Time between starts 0 to 90 m NSI 67 - Directional phase overcurrent 0 to 90 m 0 to 90 m Sign LTN, VTL EIT, UTT: 0 DT 0 to 90 m Sign LTN, VTL EIT, UTT: 0 DT 0 to 90 m RI DT 0 to 10 to 21 m RI DT 0 to 10 to 21 m RI DT or 10MT 1 to 51 m Site Data Definite time (D), VI (E), EI (F) DT or 10MT taracteristic angle 30°, 45°, 60° 0 to 51 to 2 aracteristic angle 30°, 45°, 60°, 90° 0 to 51 to 2 aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° 0 to 51 to 10 mognitude with half-plan tripping zone aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° 0 to 15 to 10 magnitude with half-plan tripping zone set point 0.1 to 15 in0 Definite time Inst; 0.0 Diset point <td>Cutial Voltage displa</td> <td></td> <td></td> <td>0.05 s to 300 s</td>	Cutial Voltage displa			0.05 s to 300 s	
nts per pend 10 60 Pend 10 6 hr neacutive starts 0 00 9 0 m NSI 67 - Directional phase over current Tripping time delay Time hold 0 Directional phase over current Tripping time delay Time hold 0 Dir 0 m SIT, LTI, VIT, EIT, UIT ¹⁰ DT RI 0 T ECE: SITA, LTI/B, VIT/B, EIT/C 0 Tor IDMT EEE: MI (D), VI (E), EI (F) 0 Tor IDMT EEE: MI (D), VI (E), EI (F) 0 Tor IDMT EEE: MI (D), VI (E), EI (F) 0 Tor IDMT AC. 1, VI, EI 0 Tor IDMT EEE: MI (D), VI (E), EI (F) 0 Tor IDMT Tor IDMT 0.1 to 24 In 0 Definite time 1 inst ; 0.0 0.1 to 24 In 10 DMT 0.1 sto 1 100 TOR 100	arts per hour				
nsecutive starts 1 to 60 Time between starts 0 to 90 m NSI 67 - Directional phase overcurrent Tripping time delay Timer hold Definite time DT SIT, LTI, VIT, EIT, UIT ¹⁰ DT RI EC: SITA, LTUB, VITB, EIT/C DT or IDMT IEC: SITA, VIT, EIT, UITC ¹⁰ DT IEC: SITA, VIT, EIT, UITC ¹⁰ DT IEC: SITA, VITB, EIT/C DT OR IDMT IEC: S		1 to 60	Period	1 to 6 hr	
NSI 67 - Directional phase overcurrent Tripping time delay Timer hold pping curve Definite time D T RI DT DT RI NIS 67N670 Type 1 - Directional earth fault, according to 10 projection aracteristic angle -45°, 0°, 45°, 80°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Set point 2 to 80 % of Un Tomem time 0; 2 to 80 % of Unp Inst; 0.0 NSI 67N67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Timer hold Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -151 fault, Tius NTF.FILLUTM Timer hold					
pping curve been functional of the functional o				0 10 00 1111	
pping curve Definite time DT STI, LTI, VTI, ETI, UTI ¹⁰ DT RI DT IEC: STI7A, LTI/VB, VTI7B, EIT/C DT or IDMT STI, DT, VTT, reset time) 0.5 s to 2 aracteristic angle -45°, 0°, 45°, 60°, 90° set point 2. to 80 % of Un morey time Tomem time 0; 0.05 s to 300 s VOmem validity set point 0. 2 to 80 % of Unp NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle aracteristic angle -45°, 0°, 15°, 30°, 45°, 0°, 90° Timer hold Definite time DT TI NIS 67N/67NC type 2 - Directional ea	rectional phase over		Timer hold		
Sit, LTi, VIT, EIT, UIT ⁽¹⁾ DT RI DT RI DT IEC: SIT/A, LTUB, VIT/B, EIT/C DT or IDMT IEEE: MI (D), VI (E), EI (F) DT or IDMT iset point 0.1 to 24 In Df or IDMT iset point 0.1 to 24 In IDMT 0.1 sto 1 iset point 0.1 to 24 In IDMT 0.1 sto 1 iset point 0.1 to 2.4 in IDMT 0.1 sto 1 iset point 0.1 to 15. no Definite time Inst; 0.0 set point 0.1 to 15 in 0 Definite time Inst; 0.0 set point 0.1 to 15 in 0 Definite time Inst; 0.0 set point 0.1 to 15 in 0 Definite time Inst; 0.0 set point 2.1 o 80 % of Un Timer hold Definite time more statistic angle -45 ^o ; 0 ^o ; 15 ^o ; 30 ^o ; 45 ^o ; 0 ^o ; 0 ^o Timer hold poing curve Definite time DT Timer hold Polinite time DT IEE: SIT/A, LTUB, VIT/B, EIT/C DT or IDMT IEE: SIT/A, EIT/, UT (^{ID} , MD					
RI DT IEC: SIT/A, LT/B, VI/B, EIT/C DT or IDMT IEC: MI (D), VI(E), EI (F) DT or IDMT AC: I, VI, EI DT or IDMT IAC: I, VI, EI DT or IDMT IAC: I, VI, EI DT or IDMT In to 2.4 In Definite time In to 2.4 In DMT In to 2.4 In DMT Int to 15 In Definite time Int to 15 In DMT Int to 15 In D T Int to 15 In DMT Int to 15 In DT Int to 15 In DT Int to 15 In DT <					
IEC: SIT/A, LTI/B, VIT/B, EIT/C DT or IDMT IEC: SIT/A, LTI/B, VIT/B, EIT/C DT or IDMT iet point 0.1 to 24 In Definite time Inst; 0.0 0.1 to 24 In Definite time Inst; 0.0 Inst; 0.0 iet rhold Definite time (DT; timer hold) Inst; 0.0 Inst; 0.0 aracteristic angle 30°, 45°, 60° Sot 50° Sot 50° NSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° Inst; 0.0 set point 0.1 to 15 In0 Definite time Inst; 0.0 0 set point 2 to 80 % of Un 0; 2 to 80 % of Unp NSI 67N/67NC type 2 - Directional acrt finatul, according to 10 anguitude with half-plan tripping zone aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° Immer hold Sti 57N/67NC type 2 - Directional acrt finatult, according to 10 anguitude with half-plan tripping zone Sti CI/LI/LI/LI/LI/LI/LI/LI/LI/LI/LI/LI/LI/LI					
IEEE: MI (D), VI (E), EI (F) DT or IDMT IAC: I, VI, EI DT or IDMT IAC: I, VI, EI Definite time Inst; 0.0 0.1 to 2.4 In IDMT 0.1 s to 1 ner hold Definite time (DT; timer hold) Inst; 0.0 IDMT (DMT; reset time) 0.5 s to 2 aracteristic angle 30°, 45°, 60°, 90° aracteristic angle 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° mory time Tomem time 0; 0.05 s to 300 s VOmem validity set point 0; 2 to 80 % of Unp 0 NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Pripping time delay Timer hold Definite time Diricit (D), VI (E), EI (F) DT or IDMT IEC: STI/A, LTVB, VIT/B, EIT/C RI 0, 1 to 15 In0 Definite time Inst; 0.0 Set point 0, 1 to 15 In0 Definite time Inst; 0.0					
IAC: I, VI, EI DT or IDMT iet point 0.1 to 24 In Definite time Inst ; 0.0 0.1 to 24 In IDMT 0.1 s to 1 her hold Definite time (DT; timer hold) Inst ; 0.0 IDMT (IDMT; reset time) 0.5 s to 2 aracteristic angle 30°, 45°, 60° INSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° iset point 2 to 80 % of Un mory time Tomem time VOmem validity set point 0; 2 to 80 % of Unp NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone poing curve Definite time SIT, LTI, VIT, EI, UIT ⁽⁰⁾ DT IEC: SIT/ALTI/B, VIT/B, EIT/C DT or IDMT IAC: I, VI, EI DT or IDMT <					
bet point 0.1 to 24 ln Definite time Inst ; 0.0 0.1 to 2,4 in IDMT 0.1 st o 1 her hold Definite time (DT; timer hold) Inst ; 0.0 IDMT (IDMT) (reset time) 0.5 st o 2 aracteristic angle 30°, 45°, 60° NSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle aracteristic angle 45°, 0°, 15°, 30°, 45°, 60° isst point 0.1 to 15 In0 Definite time 0.5 st o 20 5 st o 20 % of Unp mory time Tomem time 0; 0.05 st o 300 s VOmem validity set point 0; 2 to 80 % of Unp NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° Tripping time delay Timer hold Definite time DT 15, 10, 00 DT 16°, 10, 10 NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° set point 0.1 to 1 In0 DT 16°, 10°, 10°, 10°, 10°, 10°, 10°, 10					
0.1 to 2,4 in IDMT 0.1 to 2,4 in IDMT 0.1 to 1, to 1 Inst; 0.0 IDMT (IDMT; reset time) 0.5 s to 2 aracteristic angle 30°, 45°, 60° IDMT IDMT <td></td> <td></td> <td></td> <td></td>					
her hold Definite time (DT; timer hold) Inst; 0.0. IDMT (IDMT, reset time) 0.5 s to 2 aracteristic angle 30°, 45°, 60° NISS 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° set point 0.1 to 15 InO Definite time 0.st point 2 to 80 % of Un 0.2 to 80 % of Un more wildity set point 0.2 to 80 % of Un 0.2 to 80 % of Un more ytime Tomem time 0.1 to 15 InO 0.6 of Unp NISI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone -45°, 0°, 15°, 30°, 45°, 60°, 90° pping curve Definite time DT IEC: SIT/ALTVB, VIT/B, EIT/C DT or IDMT IEC: SIT/ALTVB, VIT/B, EIT/C				Inst ; 0.05 s to 300 s	
IDMT (IDMT; reset time) 0.5 s to 2 aracteristic angle 30°, 45°, 60° INSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle 45°, 0°, 15°, 30°, 45°, 60°, 90° isst point 0.1 to 15 In0 Definite time Inst; 0.0° 0 set point 2 to 80 % of Un 0; 2 to 80 % of Unp V0mem validity set point 0; 2 to 80 % of Unp INSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Timer hold NISI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle Tripping time delay Timer hold pping curve Definite time DT SIT, LTI, VIT, EIT, UIT f° DT RI DT SIT, LTI, VIT, EIT, UIT f° DT SIT, CIT, VIT, EIT, UIT f° set point 0.1 to 15 InO Definite time Inst; 0.0 0.1 to 11 nO IDMT (IDMT ; reset time) 0.5 sto 2 Set point 2 to 80 % of Unp IDMT (IDMT ; reset time) 0.5 sto 2 0.5 sto 2 Set point 2 to 80 % of Unp IDMT (IDMT ; reset time) 0.5 sto 2 0.5 s		,	IDMT	0.1 s to 12.5 s at 10 ls	
aracteristic angle 30°,45°,60° INSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle -45°,0°, 15°, 30°, 45°,60°,90° set point 0.1 to 15 In0 Definite time Inst;0.00 0 set point 2 to 80 % of Un Tomem time 0;0.0 5 s to 300 s Umer validity set point 0;2 to 80 % of Unp INSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°,0°, 15°, 30°, 45°, 60°, 90° Tripping time delay Timer hold Definite time DT SIT, LTT, VIT, EIT, UIT ⁽¹⁰⁾ DT IEC: SIT/ALTI/B, VIT/B, EIT/C DT or IDMT IECE: MI(D), VI (E), EI (DT or IDMT IECE: SIT/ALTI/B, VIT/B, EIT/C DT OR IDMT IECE: SIT/ALTI/B,				Inst ; 0.05 s to 300 s	
NSI 67N/67NC type 1 - Directional earth fault, according to 10 projection aracteristic angle 4-5°, 0°, 15°, 30°, 45°, 60°, 90° iset point 0.1 to 15 InO Definite time Inst; 0.0 Set point 2 to 80 % of Un mory time Tomem time 0; 0.05 s to 300 s VOmem validity set point 0; 2 to 80 % of Unp NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle 4-5°, 0°, 15°, 30°, 45°, 60°, 90° Tripping time delay Timer hold Definite time DT ETI, UT, VIT, EIT, UIT ⁽¹⁰⁾ DT IEE: SIT/A,LTV/B, VIT/B, EIT/C DT or IDMT 0.1 to 15 InO Definite time Inst; 0.0 Definite time (DT; timer hold) IDMT 0.1 s to 1 Definite time (DT; timer hold) IDMT 0.1 s to 1 DMT (IDMT; reset time) 0.5 s to 30 Store 30° s to 350° glie at end of tripping zone 0° to 359° glie at end of tripping zone 0° to 359° set point C2H core balance CT 0.1 Ato 30 A Definite time Inst; 0.0 Cre balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0				0.5 s to 20 s	
aracteristic angle	-				
set point 0.1 to 15 In0 Definite time Inst ; 0.0 0 set point 2 to 80 % of Un	NC type 1 - Direction	al earth fault, according to 10 project	ion		
0 set point 2 to 80 % of Un mory time Tomem time 0; 0.05 s to 300 s NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Timer hold pping curve Definite time DT RI DT IT RI DT IT IECE: SIT/A,LT//B, VIT//B, EIT/C DT or IDMT IECE: MI (0), VI (E), EI (F) DT or IDMT IECE: MI (D), VI (D), VI (D), TO rIDMT IAC: 1, VI, EI IAC: 1, VI, EI DT or IDMT IECE: MI (D), VI (D), VI (D), VI (D), EI (D) OI or IDMT IAC: 1, VI, EI DT or IDMT IECE: MI (D), VI (D), VI (D), VI (D), To reset time) 0.5 s to 2 IS 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0* to 359° <td>ngle</td> <td>-45°, 0°, 15°, 30°, 45°, 60°, 90°</td> <td></td> <td></td>	ngle	-45°, 0°, 15°, 30°, 45°, 60°, 90°			
Tomem time Tomem time 0; 0.05 sto 300 s NSI 67N/67NC type 2 - Directional earth fault, according to I0 magnitude with half-plan tripping zone aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Timer hold pping curve Definite time DT RI DT RI IEC: SIT/A,LT/IB, VIT/B, EIT/C DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IAC: I, VI, EI DT or IDMT IST, to 80 % of Unp 0.1 to 15 InO 0.1 to 15 InO Definite time 0.1 to 15 InO IDMT 0.8 et point 2 to 80 % of Unp rer hold Definite time (DT; timer hold) Inst; 0.0 IDMT (IDMT; reset time) 0.5 sto 2 NSI 67N/67NC type 3 - Directional earth fault, according to I0 magnitude with angular sector tripping zone 0 'to 359° gle at end of tripping zone 0 'to 359° Gle at end of tripping zone 1A CT		0.1 to 15 In0	Definite time	Inst ; 0.05 s to 300 s	
V0mem validity set point 0; 2 to 80 % of Unp NNSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone -45°, 0°, 15°, 30°, 45°, 60°, 90° aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Timer hold pping curve Tripping time delay Timer hold Definite time DT Timer hold SIT, LTI, VIT, EIT, UIT(°) DT Timer hold IEC: SIT/ALTI/B, VIT/B, EIT/C DT or IDMT IEC: SIT/ALTI/B, VIT/B, EIT/C set point 0.1 to 15 In0 Definite time Inst; 0.0 of to 15 In0 Definite time Inst; 0.0 Inst; 0.0 Inst; 0.0 0 set point 2 to 80 % of Unp 0.1 to 1 In0 IDMT 0.1 sto 1 0 set point 2 to 80 % of Unp 0.5 s to 2 IDMT (IDMT; reset time) 0.5 s to 2 IDMT (IDMT; reset time) 0.05 to 15 In0 (min. 0.1 A) Inst; 0.0 IDMT (IDMT; reset time) 0.5 s to 2 ISS 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0 's 0 359° Inst; 0.1 gle at start of tripping zone 0 'to 359° Inst; 0.1					
NSI 67N/67NC type 2 - Directional earth fault, according to 10 magnitude with half-plan tripping zone aracteristic angle aracteristic angle aracteristic angle poing curve Definite time DIFECTION (Colspan="2">Tripping time delay Timer hold DEFINIT (Colspan="2">Timer hold DIFECTION (Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspa					
aracteristic angle -45°, 0°, 15°, 30°, 45°, 60°, 90° Tripping time delay Timer hold Definite time DT SIT, LTI, VIT, EIT, UIT ⁽¹⁾ DT RI DT IEC: SIT/A,LTI/B, VIT/B, EIT/C DT or IDMT IEEE: MI (D), VI (E), EI (F) DT or IDMT IEEE: MI (D), VI (E), EI (F) DT or IDMT Set point 0.1 to 15 In0 Definite time Inst; 0.0° 0.1 to 11 n0 IDMT 0.1 sto 1 0 set point 2 to 80 % of Unp her hold Definite time (DT; timer hold) IDMT 0.1 sto 1 SIS 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° 1 ACT 0.1 A to 30 A Definite time Inst; 0.0 (2A rating) 1 ACT 0.1 Sto 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp Measured V0 (external VT) 0.6 to 80 % of Unp Massitise 20 50 to 53 Hz or 60 to 63 Hz 0.1 sto 3 MSI 81H - Overfrequency pam series 20 50 to 55 Hz or 60 to 65 Hz 0.1 sto 3 MSI 81L - Underfrequency pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 sto 3		2 1	· · ·		
pping curve Tripping time delay Timer hold Definite time DT SIT, LTI, VIT, EIT, UIT ⁽⁰⁾ DT RI DT IEC: SIT/A,LTI/B, VIT/B, EIT/C DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT IEE: MI (D), VI (E), EI (F) DT or IDMT 0.1 to 15 In0 Definite time 0.1 to 1 In0 IDMT 0.1 to 359° 0.5 to 2 gle at et of tripping zone 0° to 359° gle at et of tripping zone 0° to 359° gle at et of tripping zone 0.05 to 15 In0 (min. 0.1 A) (2Arating) 0.05 to 15 In0 (min. 0.1 A) (2rating) 1 ACT 0.05 to 15 In0 (min. 0.1 A) (range 1)	••	, , ,	ude with half-plan tripping	zone	
Definite time DT SIT, LTI, VIT, EIT, UIT ⁽¹⁾ DT RI DT IEC: SIT/A,LTI/B, VIT/B, EIT/C DT or IDMT IEE: SIT/A,LTI/B, VIT/B, EIT/C DT or IDMT IAC: I, VI, EI DT or IDMT IAC: I, VI, EI DT or IDMT 0.1 to 15 In0 Definite time 0.1 to 11n0 IDMT 0 set point 2 to 80 % of Unp ner hold Definite time (DT ; timer hold) Inst ; 0.0 IDMT (IDMT ; reset time) 0.5 s to 2 SIS 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0° to 359° gle at end of tripping zone 0° to 359°	ngle				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{tabular}{ c c c c c c c } \hline RI & DT & \\ \hline IEC: SIT/A, LTI/B, VIT/B, EIT/C & DT or IDMT & \\ \hline IEE: IM (D), VI (E), EI (F) & DT or IDMT & \\ \hline IEE: IM (D), VI (E), EI (F) & DT or IDMT & \\ \hline IAC: I, VI, EI & DT or IDMT & \\ \hline AC: I, VI, EI & DT or IDMT & \\ \hline 0.1 to 15 In0 & Definite time & Inst; 0.0 & \\ \hline 0.1 to 15 In0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 15 In0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 15 In0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 to 11 n0 & IDMT & 0.1 s to 1 & \\ \hline 0.1 Set point & 0^* to 350^\circ & \\ \hline 0.1 Set point & 0^* to 350^\circ & \\ \hline 0.1 A to 30 A & Definite time & Inst; 0.0 & \\ \hline (2A rating) & 0.05 to 15 In0 (min. 0.1 A) & \\ \hline (2A rating) & 1 & 0.05 to 15 In0 (min. 0.1 A) & \\ \hline (crage 1) & 0.05 to 15 In0 (min. 0.1 A) & \\ \hline 0.0 set point & Calculated V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (external VT) & 0.6 to 80 % of Unp & \\ \hline Measured V0 (external VT) & 0.6 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 % of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 \% of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 \% of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 \% of Unp & \\ \hline Measured V0 (sum of 3 voltages) & 2 to 80 \% of Unp & \\ \hline Mea$					
$\begin{tabular}{ c c c c c c c } \hline EC: SIT/A,LTI/B, VIT/B, EIT/C & DT or IDMT \\\hline EE: MI (D), VI (E), EI (F) & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline AC: I, VI, EI & DT or IDMT \\\hline DMT or IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & IDMT & 0.1 s to 1 \\\hline 0.1 to 1 In0 & 0 & 0 & 0.5 s to 2 \\\hline 0.1 s to 359^{\circ} & \hline 0 & 0.5 to 359^{\circ} \\\hline 0.1 to 359^{\circ} & \hline 0 & 0.5 to 15 In0 (min. 0.1 A) \\\hline (2A rating) & 1 A CT & 0.1 A to 30 A & Definite time & Inst ; 0.0 \\\hline (2A rating) & 1 A CT & 0.05 to 15 In0 (min. 0.1 A) \\\hline (2a rating) & 1 A CT & 0.05 to 15 In0 (min. 0.1 A) \\\hline (arage 1) & 0.05 to 15 In0 (min. 0.1 A) \\\hline (arage 1) & 0.05 to 15 In0 (min. 0.1 A) \\\hline (arage 1) & Calculated V0 (sum of 3 voltages) & 2 to 80 \% of Unp \\\hline Measured V0 (external VT) & 0.6 to 80 \% of Unp \\\hline Measured V0 (external VT) & 0.6 to 80 \% of Unp \\\hline Measured V0 (external VT) & 0.6 to 80 \% of Unp \\\hline Measured V0 (external VT) & 0.6 to 80 \% of Unp \\\hline Masseries 20 & 50 to 55 Hz or 60 to 65 Hz & 0.1 s to 3 \\\hline NSI 81 H - Underfrequency \\\hline man series 20 & 50 to 55 Hz or 60 to 65 Hz & 0.1 s to 3 \\\hline NSI 81 L - Underfrequency \\\hline man series 20 & 45 to 50 Hz or 55 to 60 Hz & 0.1 s to 3 \\\hline 0.1 s to 3 \\\hline NSI 81 L - Underfrequency \\\hline man series 20 & 45 to 50 Hz or 55 to 60 Hz & 0.1 s to 3 \\\hline 0.1 s to $					
IEEE: MI (D), VI (E), EI (F) DT or IDMT iset point 0.1 to 15 In0 Definite time Inst; 0.0 0 set point 2 to 80 % of Unp 0.1 s to 1 0.1 s to 1 ner hold Definite time (DT; timer hold) IDMT 0.1 s to 1 IDMT (IDMT; reset time) 0.5 s to 2 0.5 s to 2 INSI 67N/67NC type 3 - Directional earth fault, according to I0 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° 0° to 359° gle at end of tripping zone 0° to 359° 0.05 to 15 ln0 (min. 0.1 A) (2Arating) 1ACT 0.05 to 15 ln0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) 0.05 to 15 ln0 (min. 0.1 A) 1A so 30 A (range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp NSI 81H - Overfrequency 0.05 to 15 ln0 (min. 0.1 A) 0.1 s to 3 ma series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 NSI 81L - Underfrequency 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 NSI 81L - Underfrequency 45 to 50 Hz or 55 to					
IAC: I, VI, EI DT or IDMT isst point 0.1 to 15 In0 Definite time Inst; 0.0: 0.1 to 1 In0 IDMT 0.1 s to 1 0 set point 2 to 80 % of Unp Inst; 0.0: ner hold Definite time (DT; timer hold) Inst; 0.0: IDMT (IDMT; reset time) 0.5 s to 2 INSI 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° Set point CSH core balance CT 0.1 A to 30 A Definite time (2 A rating) 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (range 1) 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp Massured V0 (external VT) 0.6 to 80 % of Unp Massured V0 (external VT) NSI 81H - Overfrequency 0.1 s to 3 0.1 s to 3 pam series 20 50 to 55 Hz or 60 to 63 Hz 0.1 s to 3 NSI 81L - Underfrequency 0.1 s to 5 Hz or 55 to 60 Hz 0.1 s to 3					
set point 0.1 to 15 In0 Definite time Inst; 0.0 0 set point 2 to 80 % of Unp IDMT 0.1 st of 1 ner hold Definite time (DT; timer hold) Inst; 0.0 Inst; 0.0 IDMT (IDMT; reset time) 0.5 st o 2 0.5 st o 2 INSI 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° East point CSH core balance CT 0.1 A to 30 A Definite time Inst; 0.0 (2 A rating) 1 A CT 0.05 to 15 ln0 (min. 0.1 A) (sensitive, ln0 = 0.1 CT ln) East point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp East 0.0 1 s to 3 East 0.0 1 s to 3 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp East 0.0 1 s to 3 East 0.0 1 s to 3 0 set point Calculated V0 (seternal VT) 0.6 to 80 % of Unp East 0.0 1 s to 3 East 0.0 1 s to 3 0 set point Calculated V0 (set of 60 to 63 Hz 0.1 s to 3 East 0.0 1 s to 3 East 0.0 1 s to 3 East 0.0 1 s					
Image: 0.1 to 1 In0 IDMT 0.1 to 1 1 0 set point 2 to 80 % of Unp Inst ; 0.0 her hold Definite time (DT ; timer hold) Inst ; 0.0 IDMT (IDMT ; reset time) 0.5 s to 2 INSI 67N/67NC type 3 - Directional earth fault, according to I0 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° Set point CSH core balance CT (2A rating) 0.1 to 10 (min. 0.1A) (sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1A) (range 1) 0.05 to 15 In0 (min. 0.1A) 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp Measured V0 (external VT) NSI 81H - Overfrequency So to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 20 50 to 53 Hz or 60 to 65 Hz 0.1 s to 3 NSI 81L - Underfrequency 0.1 s to 50 Hz or 55 to 60 Hz 0.1 s to 3		, ,		Inst ; 0.05 s to 300 s	
D set point 2 to 80 % of Unp ner hold Definite time (DT; timer hold) IDMT (IDMT; reset time) Inst; 0.0 0.5 s to 2 INSI 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° set point CSH core balance CT (2A rating) 0.1 A to 30 A Definite time Inst; 0.0 (2A rating) 1 A CT (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (range 1) 0.05 to 15 In0 (min. 0.1 A) 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0.6 to 80 % of Unp NSI 81H - Overfrequency 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 0.1 s to 3 pam series 20 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 0.1 s to 3 NSI 81L - Underfrequency 0.1 s to 55 Hz or 55 to 60 Hz 0.1 s to 3 0.1 s to 3				0.1 s to 12.5 s at 10 ls0	
Definite time (DT; timer hold) Inst; 0.0 IDMT (IDMT; reset time) 0.5 s to 2 INSI 67N/67NC type 3 - Directional earth fault, according to 10 magnitude with angular sector tripping zone 0° to 359° gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° Set point CSH core balance CT 0.1 A to 30 A Definite time Inst; 0.0 (2A rating) 1A CT 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) Inst; 0.0 Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp Measured V0 (external VT) 0.6 to 80 % of Unp NSI 81H - Overfrequency 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 0.1 s to 3 pam series 20 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 NSI 81L - Underfrequency 90 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3					
IDMT (IDMT; reset time) 0.5 s to 2 Set point 0° to 359° CSH core balance CT 0.1 A to 30 A Definite time Inst; 0.0 (2 A rating) 1 A CT 0.05 to 15 ln0 (min. 0.1 A) (sensitive, ln0 = 0.1 CT In) Inst; 0.0 Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp (range 1) 0.05 to 15 ln0 (min. 0.1 A) (range 1) 0.6 to 80 % of Unp O Sot to 53 Hz or 60 to 63 Hz 0.1 s to 3 NSI 81H - Overfrequency pam series 20 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 ISSI 81L - Underfrequency pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3		· · · · · · · · · · · · · · · · · · ·		Inst ; 0.05 s to 300 s	
gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° set point CSH core balance CT (2 A rating) 0.1 A to 30 A Definite time Inst ; 0.0 1 A CT (2 A rating) 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (range 1) 0.05 to 15 In0 (min. 0.1 A) 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp NSI 81H - Overfrequency pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 NSI 81L - Underfrequency pam series 20 50 to 55 Hz or 60 Hz 0.1 s to 3				0.5 s to 20 s	
gle at start of tripping zone 0° to 359° gle at end of tripping zone 0° to 359° set point CSH core balance CT (2 A rating) 0.1 A to 30 A Definite time Inst ; 0.0 1 A CT (2 A rating) 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (range 1) 0.05 to 15 In0 (min. 0.1 A) 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp NSI 81H - Overfrequency pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 NSI 81L - Underfrequency pam series 20 50 to 55 Hz or 60 Hz 0.1 s to 3	NC type 3 - Direction	I earth fault, according to 10 magnit	ude with angular sector tri	pping zone	
Set point CSH core balance CT (2 Arating) 0.1 A to 30 A Definite time Inst ; 0.0 1 A CT (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (sensitive, In0 = 0.1 CT In) 0.05 to 15 In0 (min. 0.1 A) (range 1) 0.05 to 50 ID 0.05 to 50 ID 0.1 s to 3 Measured V0 (external VT) 0.6 to 80 % of Unp 0.NSI 81H - Overfrequency pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 0.1 s to 3 0.1 s to 3 NSI 81L - Underfrequency pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3					
(2 A rating) 0.05 to 15 ln0 (min. 0.1 A) 1 A CT 0.05 to 15 ln0 (min. 0.1 A) (sensitive, ln0 = 0.1 CT ln) 0.05 to 15 ln0 (min. 0.1 A) Core balance CT + ACE990 0.05 to 15 ln0 (min. 0.1 A) (range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp INSI 81H - Overfrequency Measured V0 (external VT) 0.6 to 80 % of Unp pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency 94 to 50 Hz or 55 to 60 Hz 0.1 s to 3	ripping zone	0° to 359°			
(sensitive, In0 = 0.1 CT In) Core balance CT + ACE990 0.05 to 15 In0 (min. 0.1 A) (range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp INSI 81H - Overfrequency Measured V0 (external VT) 0.6 to 80 % of Unp pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency Underfrequency Underfrequency pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3	(2 A rating)		Definite time	Inst ; 0.05 to 300 s	
(range 1) Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp 0 set point Calculated V0 (sum of 3 voltages) 2 to 80 % of Unp NSI 81H - Overfrequency 0.6 to 80 % of Unp pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency 0.1 s to 50 Hz or 55 to 60 Hz 0.1 s to 3	(sensitive, In0 = 0.1 CT	ln)			
Measured V0 (external VT) 0.6 to 80 % of Unp INSI 81H - Overfrequency 0.1 s to 3 pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency 0.1 s to 50 Hz or 55 to 60 Hz 0.1 s to 3					
pam series 20 50 to 53 Hz or 60 to 63 Hz 0.1 s to 3 pam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency 0 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3					
npam series 40 50 to 55 Hz or 60 to 65 Hz 0.1 s to 3 INSI 81L - Underfrequency 0.1 s to 50 Hz or 55 to 60 Hz 0.1 s to 3 pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3					
INSI 81L - Underfrequency 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3				0.1 s to 300 s	
pam series 20 45 to 50 Hz or 55 to 60 Hz 0.1 s to 3	Overfrequency			0 1 a to 200 a	
	Overfrequency			0.1 \$ 10 300 \$	
pam series 40 40 to 50 Hz or 50 to 60 Hz 0.1 s to 3	Dverfrequency D D Inderfrequency	50 to 55 Hz or 60 to 65 Hz			
	Dverfrequency D D Inderfrequency D	50 to 55 Hz or 60 to 65 Hz 45 to 50 Hz or 55 to 60 Hz		0.1 s to 300 s	
.NSI 81R - Rate of change of frequency 0.1 to 10 Hz/s Inst; 0.1	Dverfrequency D D D D D D D D D D D D	50 to 55 Hz or 60 to 65 Hz 45 to 50 Hz or 55 to 60 Hz 40 to 50 Hz or 50 to 60 Hz			

(1) Tripping as of 1.2 ls.

Control and monitoring

Description

Sepam performs all the control and monitoring functions required for electrical network operation:

■ the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.

 the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options:
 customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages

□ logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)

□ creation of personalized messages for local annunciation (Sepam series 40 only).

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- □ results of protection function processing

external logic data, connected to the logic inputs of an optional MES114 input / output module

- □ remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- □ activation of output relays to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 4 outputs included in the Sepam base unit (series 20 or series 40) may be extended by adding one MES114 modules with 10 logic inputs and 4 output relays. After selecting the MES114 type required by an application, the logic inputs must be assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Control and monitoring Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

Control of breaking devices equipped with different types of closing and tripping coils:

- circuit breakers with shunt or undervoltage trip coils
- latching contactors with shunt trip coils
- The function processes all breaking device closing and tripping conditions, based on:
- protection functions
- breaking device status data
- remote control orders
- specific control functions for each application (e.g. recloser).

The function also inhibits breaking device closing, according to the operating conditions.

With Sepam series 20, it is necessary to use an MES114 module in order to have all the required logic inputs.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged.

- locally, with the weet key
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/ contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

ANSI 68 - Logic discrimination

This function provides:

perfect tripping discrimination with phase-to-phase and phase-to-earth shortcircuits, on all types of network

■ faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

■ sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)

and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Control and monitoring Description of predefined functions

Local indications on the Sepam front panel.

ANSI 30 - Local annunciation

LED indication on the Sepam front panel

- 2 LEDs indicate the unit operating status:
- □ green LED ON: Sepam on

□ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)

- 9 yellow LEDs:
- □ pre-assigned and identified by standard removable labels

□ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam's advanced UMI

Events and alarms may be indicated locally on Sepam's advanced UMI by:

- messages on the display unit, available in 2 languages:
- □ english, factory-set messages, not modifiable

□ local language, according to the version delivered (the language version is chosen when Sepam is set up)

■ the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

■ to clear the message from the display, press the 😭 key

■ after the fault has disappeared, press the → key: the light goes off and Sepam is reset

■ the list of alarm messages remains accessible (▲ key) and may be cleared by pressing the wey.

Sepam series 20 Sepam series 40

Control and monitoring Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: customization of the control matrix by changing the assignment of output relays,

LEDs and annunciation messages

■ logic equation editor, to adapt and complete the predefined control and monitoring functions (Sepam series 40 only)

■ creation of personalized messages for local annunciation (Sepam series 40 only).

SFT2841: control matrix.

Control matrix

The control matrix is a simple way to assign data from:

- protection functions
- control and monitoring functions
- logic inputs
- logic equations
- to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

Logic equation editor (Sepam series 40)

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- additional interlocking
- □ conditional inhibition/validation of functions
- □ etc.

adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication

 utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing

■ used to inhibit or reset a protection function.

Personalized alarm and operating messages (Sepam series 40)

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on the Sepam display
- in the SFT2841 "Alarms" and "Alarm History" screens.

Characteristics Sepam series 20 Sepam series 40

Base unit Presentation

Base units are defined according to the following characteristics:

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector.

Sepam base unit (series 20 or series 40) with integrated advanced UMI.

Sepam base unit (series 20 or series 40) with basic UMI.

Customized Chinese advanced UMI.

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam base units (series 20 or series 40):

- advanced UMI
- basic UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

- A Sepam (series 20 or series 40) with a remote advanced UMI is made up of :
- a base unit with basic UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

□ for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 166.

Advanced UMI

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand:

- display of all measurement and diagnosis data in numerical format with units and/ or in bar graphs
- display of operating and alarm messages, with alarm acknowledgment and Sepam resetting
- display and setting of all the Sepam parameters
- display and setting of all the parameters of each protection function
- display of Sepam and remote module versions
- output testing and logic input status display
- entry of 2 passwords to protect parameter and protection settings.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-guided access to data.
- graphical LCD screen to display any character or symbol
- excellent display quality under all lighting conditions: automatic contrast setting and backlit screen (user activated).

Basic UMI

A Sepam with basic UMI offers an economical solution suited to installations that do not require local operation (managed by a remote monitoring and control system) or to replace electromechanical or analog electronic protections units with no additional operating needs.

The basic UMI includes:

- 2 signal lamps indicating Sepam operating status:
 9 parameterizable yellow signal lamps equipped with a standard label
- button for clearing faults and resetting.

Working language

All the texts and messages displayed on the advanced UMI are available in 2 languages:

- english, the default working language
- and a second language, which may be
- □ french
- □ spanish
- □ another "local" language.

Please contact us regarding local language customization.

Setting and operating software

SFT2841 setting and operating software can be used for easy setting of Sepam parameters and protection functions.

A PC containing the SFT2841 software is connected to the communication port on the front of the unit.
Base unit

Presentation

	Selectio	on guide	
Base unit	With basic UMI	With integrated advanced UMI	With remote advanced UMI
Functions			
Local indication			
Metering and diagnosis data			
Alarms and operating messages			
Sepam parameter setting			—
Protection setting			
Version of Sepam and remote modules			
Status of logic inputs		•	•
Local control			_
Alarm acknowledgement			
Sepam reset			—
Output testing		•	•
Characteristics			
Screen			
Size		128 x 64 pixels	128 x 64 pixels
Automatic contrast setting			
Backlit screen		•	•
Keypad		<u>^</u>	<u>^</u>
Number of keys	1	9	9
LEDs Sepam operating status	2 LEDs on front	2 LEDs on front	 base unit: 2 LEDs on front remote advanced UMI: 2 LEDs on front
Indication LEDs	9 LEDs on front	9 LEDs on front	9 LEDs on remote advanced UMI
Mounting			
	Flush mounted on front of cubicle	Flush mounted on front of cubicle	 base unit with basic UMI, mounted at the back of the compartment using the AMT840 mounting plate DSM303 remote advanced UMI module ,flush mounted on the front of the cubicle and connected to the base unit with the CCA77x prefabricated cord

Base unit Presentation

Hardware characteristics

Auxiliary power supply

Sepam series 20 and Sepam series 40 can be supplied by either of the following voltages:

- 24 to 250 V DC
 110 to 240 V AC.

Four relay outputs

The 4 relay outputs O1 to O4 on the base unit must be connected to connector (Å). Each output can be assigned to a predetermined function using the SFT2841 software.

O1, O2 and O3 are 3 control outputs with one NO contact. O1 and O2 are used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition.

O4 is an indication output with one NO contact and one NC contact.

It can be assigned to the watchdog function.

Main connector (A)

A choice of 2 types of removable, screw-lockable 20-pin connectors:

- CCA620 screw-type connector
- CCA622 ring lug connector.

Phase current input connector

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

- CCA630 or CCA634 connector for 1 A or 5 A current transformers
- or
- CCA670 connector for LPCT sensors.
- The presence of these connectors is monitored.

Voltage input connector

Sepam B21 and B22

Voltage sensors connected to the removable, screw-lockable CCT640 connector. The presence of the CCT640 connector is monitored.

Sepam series 40

Voltage sensors connected to the 6-pin connector (E).

- A choice of 2 types of removable, screw-lockable 6-pin connectors:
- CCA626 screw-type connector
- or
- CCA627 ring lug connector.

The presence of the (E) connector is monitored.

Mounting accessories

AMT840 mounting plate

It is used to mount a Sepam with basic UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 20 and Sepam series 40 units with integrated advanced UMIs.

- The accessory includes:
- a lead-sealable cover plate

the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 20 and Sepam series 40 units with serial numbers higher than 0440000.

Sepam unit with integrated advanced UMI and lead sealing accessory AMT852.

PERR034

Base unit Dimensions

Dimensions

mm in <u>160</u> *6.3* DE88104 ղի Π 98 X 3.85 52 2.04 31⁽¹⁾ 176 1.22 6.93

Sepam with advanced UMI and MES114, flush-mounted in front panel.

(1) With basic UMI: 23 mm (0.91 in).

Sepam with advanced UMI and MES114, flush-mounted in front panel.

| Clearance for Sepam assembly and wiring.

Cut-out

106

DE88.

Cut-out accuracy must be complied with to ensure good withstand.

Assembly with AMT840 mounting plate

Used to mount Sepam with basic UMI at the back of the compartment with access to the connectors on the rear panel.

Mounting associated with the use of the remote advanced UMI (DSM303).

Sepam with basic UMI and MES114, mounted with AMT840 plate. Mounting plate thickness: 2 mm (0.079 in).

A CAUTION

Trim the edges of the cut-out plates to remove

Failure to follow this instruction can cause

HAZARD OF CUTS

any jagged edges.

serious injury.

AMT840 mounting plate.

9.23

Base unit Description

- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- **3** 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameter setting.
- 14 Entry of 2 passwords.
- 15 PC connection port.

The " \checkmark , \blacktriangle , \bigstar keys (9, 10, 11) are used to browse through the menus and to scroll through and accept the values displayed.

Front panel with advanced UMI

Front panel with basic UMI

- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- **3** 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
 5 Acknowledgement / clearing of alarms and Sepam reset.
- 6 PC connection port.

Base unit Description

1 Base unit.

(A) 20-pin connector for:

- auxiliary poxer supply
- 4 relay outputs
- 1 residual current input.
- (B) Connector for 3 phase current I1, I2, I3 inputs and residual current

(C) Communication port.

(D) Remote module connection port .

- (E) 6-pin connector for 3 phase voltage V1, V2, V3 inputs.
- 2 Connector for MES114 input/output module.
- 3 2 mounting clips.
- 4 2 locating nibs in flush-mounted position.

4

Base unit Technical characteristics

Weight						
Sepam series 20			base unit with basic			1.2 kg (2.6 lb)
Sepam series 40		Maximum weight (base unit with advanced UMI and MES114) Minimum weight (base unit with basic UMI and without MES114)				1.7 kg (3.7 lb)
					-	1.4 kg (3.1 lb)
		Maximum weight	(base unit with adva	anced UMI and ME	S114)	1.9 kg (4.2 lb)
Analog inputs						
Current transformer		Input impedance				< 0.02 Ω
1 A or 5 A CT (with CCA630 or CC	A634)	Consumption				< 0.02 VA at 1 A
1 A to 6250 A ratings						< 0.5 VA at 5 A
		Rated thermal wit	hstand			4 In
		1-second overload	d			100 ln (≤ 500 A)
Voltage transformer		Input impedance				> 100 k Ω
220 V to 250 kV ratings		Input voltage				100 to 230/√3 V
		Rated thermal wit				240 V
		1-second overload	d			480 V
Temperature sensor i	input (MET148-2 mo	dule)				
Type of sensor		Pt 100				Ni 100 / 120
solation from earth		None				None
Current injected in sensor		4 mA				4 mA
Maximum distance between sense	or and module	1 km (0.62 mi)				
Logic inputs		MES114	MES114E		MES114F	
Voltage		24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC
		19.2 to 275 V DC	88 to 150 V DC	88 to 132 V AC	176 to 275 V DC	176 to 264 V AC
Range Frequency		- 19.2 to 275 V DC	-	47 to 63 Hz	-	47 to 63 Hz
Typical consumption		 3 mA	- 3 mA	3 mA	- 3 mA	3 mA
Typical switching threshold		14 V DC	82 V DC	58 V AC	154 V DC	120 V AC
Input limit voltage	At state 1	≥ 19 V DC	≥ 88 V DC	≥88 V AC	≥ 176 V DC	≥ 176 V AC
input innit voltage	At state 0	≤6VDC	≤75 V DC	≤22 V AC	≤ 137 V DC	≤ 48 V AC
solation of inputs in relation to oth		Enhanced	Enhanced	Enhanced	Enhanced	Enhanced
· · · ·	ier isolated groups	Ennancea	Ennanced	Ennanced	Ennancea	Ennanced
Relays outputs						
Control relay outputs (O1,						
Voltage	DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	
	AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		8A	8A	8A	8A	8A
Breaking capacity	Resistive load	8/4A	0.7 A	0.3A	0.2 A	
	L/R load < 20 ms	6/2A	0.5 A	0.2 A		
	L/R load < 40 ms	4/1A	0.2 A	0.1 A		
	Resistive load	-	-	-		8A
	p.f. load > 0.3	-	-	-		5A
Making capacity		< 15 A for 200 ms				
Isolation of outputs in relation to o	• 1	Enhanced				
Annunciation relay output	• • • •	acts)				
Voltage	DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	
	AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		2A	2A	2 A	2A	2A
Breaking capacity	Resistive load	2/1A	0.6 A	0.3 A	0.2 A	-
	L/R load < 20 ms	2/1A	0.5A	0.15A	0.2 A ⁽³⁾	-
	p.f. load > 0.3	-	-	-	-	1A
Isolation of outputs in relation to o	ther isolated groups	Enhanced				
Power supply						
Voltage		24 / 250 V DC		110 / 240 V A0	2	
Range		-20 % +10 %			(47.5 to 63 Hz)	
Deactivated consumption ⁽¹⁾	Sepam series 20	< 4.5 W		< 9 VA	. ,	
	Sepam series 40	< 6 W		< 6 VA		
Maximum consumption ⁽¹⁾	Sepam series 20	< 8 W		< 15 VA		
··· F	Sepam series 40	< 11 W		< 25 VA		
nrush current	Sepam series 20, serie 40	< 10 A for 10 ms, <	< 28 A for 100 us	< 15 A for first	half-period	
	Sepam series 20	10 ms		10 ms	P	
Acceptable momentary outages		10 ms		10 ms		
Acceptable momentary outages	Separn series 40					
	Sepam series 40					
Analog output (MSA1	•		- 40 - 40 4			
Analog output (MSA1	•	4 - 20 mA, 0 - 20 r				
Analog output (MSA1	•					

(1) According to comply with clause 6.7 of standard C37.90 (30 A, 200 ms, 2000 operations).
 (3) Sepam series 20 only.

Base unit Environmental characteristics

Electromagnetic compatibility	Standard	Level / Class	Value
Emission tests			
isturbing field emission	IEC 60255-25		
	EN 55022	Α	
onducted disturbance emission	IEC 60255-25		
	EN 55022	В	
mmunity tests – Radiated disturbances			
nmunity to radiated fields	IEC 60255-22-3		10 V/m ; 80 MHz - 1 GHz
	IEC 61000-4-3	III	10 V/m ; 80 MHz - 2 GHz
	ANSI C37.90.2 (2004)		20 V/m ; 80 MHz - 1 GHz
lectrostatic discharge	IEC 60255-22-2		8 kV air ; 6 kV contact
and the second of the first second second second	ANSI C37.90.3	D/	8 kV air ; 4 kV contact
nmunity to magnetic fields at network frequency	IEC 61000-4-8	IV	30 A/m (continuous) - 300 A/m (13 s
Immunity tests – Conducted disturbances			40.14
nmunity to conducted RF disturbances nmunity to conducted disturbances in common mode from 0 Hz	IEC 60255-22-6 IEC 61000-4-16		10 V
150 kHz	IEC 81000-4-18	111	
ast transient bursts	IEC 60255-22-4	A or B	4 kV ; 2.5 kHz / 2 kV ; 5 kHz
	IEC 61000-4-4	IV	4 kV ; 2.5 kHz
	ANSI C37.90.1		4 kV ; 2.5 kHz
MHz damped oscillating wave	IEC 60255-22-1	111	2.5 kV MC ; 1 kV MD
	ANSI C37.90.1		2.5 kV MC and MD
00 kHz damped oscillating wave	IEC 61000-4-12		2.5 kV MC ; 1 kV MD
urges	IEC 61000-4-5	III	2 kV MC
oltage interruptions	IEC 60255-11		Series 20: 100 %, 10 ms
	0(Series 40: 100 %, 20 ms
Mechanical robustness	Standard	Level / Class	Value
In operation			
brations	IEC 60255-21-1	2	1 Gn ; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	2 Hz - 13.2 Hz ; a = ±1 mm
hocks	IEC 60255-21-2	2	10 Gn / 11 ms
arthquakes	IEC 60255-21-3	2	2 Gn (horizontal axes)
			1 Gn (vertical axes)
De-energized			
ibrations	IEC 60255-21-1	2	2 Gn ; 10 Hz - 150 Hz
hocks	IEC 60255-21-2	2	30 Gn / 11 ms
blts	IEC 60255-21-2	2	20 Gn / 16 ms
Climatic withstand	Standard	Level / Class	Value
In operation			
xposure to cold	IEC 60068-2-1	Series 20: Ab	-25 °C (-13 °F)
		Series 40: Ad	
xposure to dry heat	IEC 60068-2-2	Series 20: Bb	+70 °C (+158 °F)
ontinuous exposure to damp heat	IEC 60068-2-3	Series 40: Bd	10 days ; 93 % RH ; 40 °C (104 °F)
emperature variation with specified variation rate	IEC 60068-2-14	Nb	-25 °C to +70 °C (-13 °F to +158 °F
emperature variation with specified variation rate	120 00000-2-14	Nb	5 °C/min (41 °F/min)
alt mist	IEC 60068-2-52	Kb/2	
fluence of corrosion/gaz test 2	IEC 60068-2-60	С	21 days ; 75 % RH ; 25 °C (-13 °F);
			0.5 ppm H ₂ S ; 1 ppm SO ₂
fluence of corrosion/gaz test 4	IEC 60068-2-60		21 days ; 75 % RH ; 25 °C ;
			$0.01 \text{ ppm H}_2\text{S}$; 0.2 ppm SO ₂ ;
(3)			$0.02 \text{ ppm NO}_{2;}$; 0.01 ppm \overline{Ol}_{2}
In storage (3)		A1	
xposure to cold	IEC 60068-2-1	Ab	<u>-25 °C (-13 °F)</u>
xposure to dry heat	IEC 60068-2-2 IEC 60068-2-3	Bb	+70 °C (+158 °F) 56 dovo : 02 % PH : 40 °C (104 °E)
ontinuous exposure to damp heat		Ca	56 days ; 93 % RH ; 40 °C (104 °F)
Safety	Standard	Level / Class	Value
Enclosure safety tests			
ront panel tightness	IEC 60529	IP52	Other panels closed, except for
		True 40 with a set of set of the	rear panel IP20
in withotond	NEMA	Type 12 with gasket supplied	
ire withstand	IEC 60695-2-11		650 °C with glow wire (1562 °F)
Electrical safety tests			5 107 (1)
2/50 µs impulse wave	IEC 60255-5		5 kV ⁽¹⁾
ower frequency dielectric withstand	IEC 60255-5		2 kV 1 mn ⁽²⁾
Certification			
6	Harmonized standard: EN 50263	□ 92/31/CEE Amendment □ 93/68/CEE Amendment ■ 73/23/CEE Low Voltage	etic Comptability (EMC) Directive Directive
L- . 51		□ 93/68/CEE Amendment	File F040500
	UL508 - CSA C22.2 n° 14-95		File E212533
SA	CSA C22.2 n° 14-95 / n° 94-N		File 210625

(1) Except for communication: 3 kV in common mode and 1kV in differential mode
(2) Except for communication: 1 kVrms
(3) Sepam must be stored in its original packing.

2

Base unit Sepam series 20

(1) This type of connection allows the calculation of residual voltage.

Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
Â	Screw type	CCA620	 wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire DZ5CE025D for 1 x 2.5 mm² wire AZ5DE010D for 2 x 1 mm² wires tube length: 8.2 mm stripped length: 8 mm
	6.35 mm ring lugs	CCA622	 6.35 mm ring or spade lugs (1/4 in) maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) stripped length: 6 mm use an appropriate tool to crimp the lugs on the wires maximum of 2 ring or spade lugs per terminal tightening torque: 0.7 to 1 Nm
B For Sepam S20, S23, T20, T23 and	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 wire cross-section of 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
M20	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
B For Sepam B21 and B22	Screw type	CCT640	Same as wiring for the CCA620
C	Green RJ45 plug		CCA612
D	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)

Connection diagrams Sepam series 20 Sepam series 40

Base unit Sepam series 40

(1) This type of connection allows the calculation of residual voltage. (2) Accessory for bridging terminals 3 and 5 supplied with CCA626 and CCA627 connector.

Connection

Dangerous voltages may be present on the terminal screws, whether the terminals are used or not. To avoid all danger of electrical shock, tighten all terminal screws so that they cannot be touched inadvertently.

Connector	Туре	Reference	Wiring
Â	Screw type	CCA620	 wiring with no fittings: 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire
	6.35 mm ring lugs	CCA622	 ■ 6.35 mm ring or spade lugs (1/4 in) ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 0.7 to 1 Nm
В	4 mm ring lugs	CCA630, CCA634, for connection of 1 A or 5 A CTs	 wire cross-section of 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA670, for connection of 3 LPCT sensors	Integrated with LPCT sensor
C	Green RJ45 plug		CCA612
D	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13 ft)
(E)	Screw type	CCA626	Same as wiring for the CCA620
	6.35 mm ring lugs	CCA627	Same as wiring for the CCA622

Base unit Other phase current input connection schemes

Variant 1: phase current measurements by 3 x 1 A or 5 A CTs (standard connection)

Description

Connection of 3 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Sensor type	5ACT or 1ACT	
Number of CTs	11, 12, 13	
Rated current (In)	1 A to 6250 A	

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

CCA630/ CCA634

Description

Connection of 2 x 1 A or 5 A sensors to the CCA630 or CCA634 connector.

The measurement of phase currents 1 and 3 is sufficient to ensure all the phase current-based protection functions. The phase current I2 is only assessed for metering functions, assuming that I0 = 0.

This arrangement does not allow the calculation of residual current.

Parameters

Sensor type	5ACT or 1ACT
Number of CTs	11, 13
Rated current (In)	1 A to 6250 A

Variant 3: phase current measurement by 3 LPCT type sensors

Description

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA670 connector. The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

Note: Parameter In must be set 2 twice:

■ Software parameter setting using the advanced UMI or the SFT2841 software tool

Hardware parameter setting using microswitches on the CCA670 connector

L1 | L2 | L3

DE88118

Base unit Other residual current input connection schemes

Variant 1: residual current calculation by sum of 3 phase currents

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by $3 \times 1 \text{ A or } 5 \text{ A CTs}$ or by 3 LPCT type sensors. See current input connection diagrams.

Parameters

Residual current	Rated residual current	Measuring range	
Sum of 3 Is	In0 = In, CT primary current	0.1 to 40 In0	

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT

(standard connection)

Description

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

Parameters

Rated residual current	Measuring range
In0 = 2 A	0.2 to 40 A
In0 = 5 A	0.5 to 100 A
In0 = 20 A	2 to 400 A
	In0 = 2 A In0 = 5 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634

Description

Residual current measurement by 1 A or 5 A CTs.

- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

Parameters

Residual current	Rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5ACT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

L2 L3

÷

Base unit Other residual current input connection schemes

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT

Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:

■ connection of CSH30 interposing ring CT to 1 A CT: make 2 turns through CSH primary

■ connection of CSH30 interposing ring CT to 5 A CT: make 4 turns through CSH primary.

for Sepam series 40, the sensitivity can be mulitplied by 10 using the "sensitive" setting with In0 = In/10.

Parameters

Residual current	Rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.1 to 20 In0
1 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0
5ACT	In0 = In, CT primary current	0.1 to 20 In0
5 A CT sensitive	In0 = In/10 (Sepam series 40)	0.1 to 20 In0

CSH30

CT 1 A : 2 turns CT 5 A : 4 turns 18

10

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between an MV core balance CT with a ratio of 1/n (50 < n < 1500) and the Sepam residual current input. This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

Residual current	Rated residual current	Measuring range
ACE990 - range 1	$ln0 = lk.n^{(1)}$	0.1 to 20 In0
(0.00578≤k≤0.04)		
ACE990 - range 2	$ln0 = lk.n^{(1)}$	0.1 to 20 In0
(0.0578≤k≤0.26316)		
(d)	Jamas OT to mas	

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

DE88343

Connection diagrams Sepam series 20 Sepam series 40

Voltage inputs

Sepam series 20

The phase and residual voltage transformer secondary circuits are connected to the CCT640 connector (item (B)) on Sepam series 20 type B units. The CCT640 connector contains 4 transformers which perform isolation and impedance matching of the VTs and Sepam input circuits.

Voltage inputs

Sepam series 40

The phase and residual voltage transformer secondary circuits are connected directly to the connector marked (\underline{E}) . The 3 impedance matching and isolation transformers are integrated in the

Sepam series 40 base unit.

Variant 1: measurement of 3 phase-to-neutral voltages (standard connection) Phase voltage sensor parameter setting 3V L2 Residual voltage sensor parameter setting 3V sum DE88131 V1, V2, V3 Voltages measured Values calculated U21, U32, U13, V0, Vd, Vi, f <_____€ Measurements unavailable None <\\v2@€ Protection functions unavailable None (according to type of Sepam) Variant 2: measurement of 2 phase-to-phase voltages and residual voltage L1 L2 Phase voltage sensor parameter setting U21, U32 13 Residual voltage sensor parameter setting External VT DE88132 U21, U32, V0 Voltages measured Values calculated U13, V1, V2, V3, Vd, Vi, f **√**⊻19€ Measurements unavailable None Protection functions unavailable None <\√23€ (according to type of Sepam) <\√33€ Variant 3: measurement of 2 phase-to-phase voltages U21, U32 Phase voltage sensor parameter setting Residual voltage sensor parameter setting None DE88133 U21, U32 Voltages measured Values calculated U13, Vd, Vi, f Measurements unavailable V1, V2, V3, V0 67N/67NC, 59N Protection functions unavailable (according to type of Sepam) Variant 4: measurement of 1 phase-to-phase voltage and residual voltage U21 Phase voltage sensor parameter setting Residual voltage sensor parameter setting External VT DE88134 Voltages measured U21, V0 Values calculated f U32, U13, V1, V2, V3, Vd, Vi Measurements unavailable 67, 47, 27D, 32P, 32Q/40, 27S Protection functions unavailable <\√23€ (according to type of Sepam)
 V396 Variant 5: measurement of 1 phase-to-phase voltage Phase voltage sensor parameter setting U21 Residual voltage sensor parameter setting None DE88135 Voltages measured U21 Values calculated U32, U13, V1, V2, V3, V0, Vd, Vi (<u>v</u>136 Measurements unavailable Protection functions unavailable 67, 47, 27D, 32P, 32Q/40, <\√23€ (according to type of Sepam) 67N/67NC, 59N, 27S <\√v3∋€

schneider-electric.com

Training

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... Training allows you to acquire the Schneider Electric expertise (installation design, work with power on, etc.) for increased efficiency and a guarantee of improved customer service.

The training catalogue includes beginner's courses in electrical distribution, knowledge of MV and LV switchgear, operation and maintenance of installations, design of LV installations to give but a few examples.

Sepam series 20 Sepam series 40 Sepam series 80

Sepam series 80

Range description	3
Sepam series 20 and Sepam series 40	51
Sepam series 80	90
Selection table	90
Functions Sepam series 80	92
Sensor inputs	92
General settings	93
Metering and diagnosis	94
Description	94
Characteristics	99
Protection	100
Description	100
Tripping curves	106
Main characteristics	108
Setting ranges	109
Control and monitoring	113
Description	113
Description of predefined functions	114
Adaptation of predefined functions using the SFT2841 software	118
Customized functions using Logipam	120
Characteristics	121
Base unit	121
Presentation	121
Description	125
Technical characteristics	127
Environmental characteristics	128
Dimensions	129
Connection diagrams	130
Base unit	130
Connection	131
Sepam B83	132
Sepam C86	133
Phase current inputs	134
Residual current inputs	135
Phase voltage inputs Residual voltage input	137
Main channels	137
Additional channels for Sepam B83	138
Additional channel for Sepam B80	139
Available functions	140
Additional modules and accessories	143
Order form	223
Index	233

Selection table

		Subs	tatior	<u>ו</u>		Tran	sform	er	Moto	r		Gene	rator		Busb	ar	Сар
Protection	ANSI code	S80	S 81	S82	S84	T81	T82	T 87	M81	M87	M88	G82	G87	G88	B80	B83	C86
Phase overcurrent ⁽¹⁾	50/51	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Earth fault / Sensitive earth fault ⁽¹⁾		8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
Breaker failure	50BF	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Negative sequence / unbalance	46	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Thermal overload for cables	49RMS		1	1	1												
Thermal overload for machines ⁽¹⁾	49RMS					2	2	2	2	2	2	2	2	2			
Thermal overload for capacitors	49RMS																1
Capacitor bank unbalance	51C			_													8
Restricted earth fault	64REF					2	2	2				2	-	2			
Two-winding transformer differential	87T							1			1			1			
Machine differential	87M									1			1				
Directional phase overcurrent ⁽¹⁾	67			2	2		2	2				2	2	2			
Directional earth fault ⁽¹⁾	67N/67NC		2	2	2	2	2	2	2	2	2	2	2	2			
Directional active overpower	32P		2	2	2	2	2	2	2	2	2	2	2	2			
Directional reactive overpower	32Q								1	1	1	1	1	1			
Directional active underpower	37P				2							2				_	
Phase undercurrent	37								1	1	1						
Excessive starting time, locked rotor	48/51LR								1	1	1						
Starts per hour	66								1	1	1					_	
Field loss (underimpedance)	40								1	1	1	1	1	1		_	
Pole slip	78PS								1	1	1	1	1	1			
Overspeed (2 set points) ⁽²⁾	12																
Underspeed (2 set points) ⁽²⁾	14															_	
Voltage-restrained overcurrent	50V/51V											2	2	2			
Underimpedance	21B											1	1	1			
Inadvertent energization	50/27											1	1	1		_	
Third harmonic undervoltage / 100 % stator earth fault	27TN/64G2 64G											2	2	2			
Overfluxing (V / Hz)	24							2				2	2	2			
Undervoltage (L-L or L-N)	27	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Positive sequence undercurrent	27D	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Remanent undervoltage	27R	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Overvoltage (L-L or L-N)	59	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Neutral voltage displacement	59N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Negative sequence overvoltage	47	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Overfrequency	81H	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Underfrequency	81L	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Rate of change of frequency	81R	4			2	4	4	4	4	4	4	4	4	4	4	4	4
rate of enalige of nequency	0111			_	-												
	70	_		_	_												
	79											_					_
Thermostat / Buchholz ⁽²⁾ Temperature monitoring	79 26/63 38/49T																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾	26/63																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾	26/63 38/49T 25																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽⁸⁾ Synchro-check ⁽⁴⁾	26/63 38/49T 25 ng																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control	26/63 38/49T 25 ng																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾	26/63 38/49T 25 ng 94/69																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart	26/63 38/49T 25 ng 94/69																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation	26/63 38/49T 25 ng 94/69																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation Genset shutdown	26/63 38/49T 25 ng 94/69																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation Genset shutdown Capacitor step control ⁽²⁾	26/63 38/49T 25 ng 94/69																
Synchro-check ⁽⁴⁾ Control and monitori	26/63 38/49T 25 ng 94/69									•							
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation Genset shutdown Capacitor step control ⁽²⁾ Logic discrimination ⁽²⁾ Latching / acknowledgement	26/63 38/49T 25 ng 94/69 68																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽⁹⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation Genset shutdown Capacitor step control ⁽²⁾ Logic discrimination ⁽²⁾	26/63 38/49T 25 ng 94/69 68 86																
Thermostat / Buchholz ⁽²⁾ Temperature monitoring (16 RTDs) ⁽³⁾ Synchro-check ⁽⁴⁾ Control and monitori Circuit breaker / contactor control Automatic transfer (AT) ⁽²⁾ Load shedding / automatic restart De-excitation Genset shutdown Capacitor step control ⁽²⁾ Logic discrimination ⁽²⁾ Latching / acknowledgement Annunciation	26/63 38/49T 25 ng 94/69 68 86																

90

The figures indicate the number of relays available for each protection function.
a standard, □ options.
(1) Protection functions with 2 groups of settings.
(2) According to parameter setting and optional MES120 input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.

3

Sepam series 80

Selection table

Set 0 Set 0 <th< th=""><th></th><th>Subst</th><th>tati<u>on</u></th><th></th><th></th><th>Trans</th><th>form</th><th>er</th><th>Moto</th><th>r</th><th></th><th>Gene</th><th>rator</th><th></th><th>Bust</th><th>oar</th><th>Сар</th></th<>		Subst	tati <u>on</u>			Trans	form	er	Moto	r		Gene	rator		Bust	oar	Сар	
hase current 11, 12, 13 FMS I<	Metering	S80	S81	S82 9	584	T81	T82	T 87	M81	M87	M88	G82	G87	G88	B80	B83		
leasured reschule corrent (1, cla claulede 015 energy ener					-										-			
bell demonstrument (1), M.B.() I <						.	•	•			•	• •	•			•	. .	
catavid accorrect 10 Image 2000 <	emand current I1, I2, I3								•	-	-			•	-	•	Ь÷.,	
antegrid 1, U32, U13, V1, V2, V3	eak demand current IM1, IM2, IM3			_						_								
and all holds of the function of mechanics of the function of mechanics of the sequence voltage VI (and the sequence voltage VI (b)		_		_	_										-		_	
control control <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Denote sequence, vollage V1 volume or vollage V1 volume or vollage V2 volume or vollage V2 volume or volum				_												_	12.	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		_	_	-			-	_		-	_	-	_	_	-	-	12.	
Childe operate P. P1, P2, P3 as action prover (S, S1, S2, S3) as action and reactive energy (4Wh, 4VARb) wow factor. action and or energy (4Wh, 4VARb) wow factor. action and the energy (4Wh, 4VARb) wow factor. wow factor. action and the energy (4Wh, 4VARb) wow factor. wow factor. wow factor. action and the energy (4Wh, 4VARb) wow factor. wow facto				-	-									_		-		
aedive power (2, 01, 02, 03 eak demand power PM. (0M work factor acculated active and reactive energy (4Mh, ±VARh) acculated active and reactive energy (4Mh, ±VARh) acculated active and reactive energy (4Mh, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4M, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4M, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4Mh, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4Mh, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4Mh, ±VARh) base current 17, 12, 13 FMMS adculated active and reactive energy (4Mh, ±VARh) equalso V1 equalso V1 energe active (18 RTDs) ^(M) base current 10, 17, 10, 2, 70, V1, V1, V2, V3, V1, V1 and equalso V1 energe active (18 RTDs) ^(M) base current 10, 17, 10, 2, 71, 10, 12 maronic distortion (7Hp), L, 11, 10, 2, 71, 10, 12 energe active (18 RTDs) ^(M) base factor equalso V0 entra 10, 00, 00, 00, 00, 00, 00, 00, 00, 00,												•			-		•	
parent prover 5, 51, 52, 53 ack demand power factor alloaded advise and reactive energy (4Wh, 4WAR) builded advise ad		-							•	-	-			-	-	-	L 8.	
Numer Lador Image									•	-	-			•	-	•	Ь÷.,	
andvalued achine and reactive energy (VM, VARh) Image: Image	eak demand power PM, QM	•		-		1 - 1 -									-		. .	
Drive and reactive nergy by pulse conting ^{An} D D <t< td=""><td></td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>_</td></t<>				_	_										-		_	
V:M. 4 WARD) V:M. 4 WARD)<		·/													_		_	
hase current 1/1, 1/2, 1/3 MNS adcurrent 1/02. 																		
alculated residuel current 102 bige U21, U13, U13, V1, V1, V2, V3, Vd, V1 and geuency esidual voltage V0 esidual voltage V0 esidual voltage V1 U21, U32, U13, V1, V2, V3, Vd, V1 and geuency esidual voltage V0 esidual voltage V1 U U U U U U U U U U U U U U U U U U U													_	_			-	
bilage U21, V13 and frequency <td <t<="" <td="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	<td></td>																	
palage U21, U32, U13, V1, V2, V3, Vd, V1 and generature (18, TDb)(*) <td <td="" <td<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td></td><td>-</td><td></td><td>-</td><td></td><td>-</td></td>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td>								-		-	-		-		-		-
equency																_	-	
esidual (voltage V0 0 0																		
amperature (16 RTDs) ^{am} a a </td <td></td>																		
Induition specify eutral point voltage Vht Network and machine diagnosis ripping context														D		_		
Network and machine diagnosis ipping context ipping						_		_										
Network and machine diagnosis ipping context ipping context Trip1, Trip12, Trip13 hase fault and earth fault trip counters hase displacement q0, q0, q02 hase displacement q0, q0, q0																	-	
ipping current Trip1, Trip12, Trip13 ipping current Trip1, Trip12, Trip13 asea fault and earth fault trip counters hase fault and earth fault trip counters hase displacement φ0, φ0, φ0Σ hase displacement φ1, φ2, φ3 isturbance recording memal capacity used emaining operating time before overload tripping atting time atter attor overload tripping atting time atter overload tripping atting time atting time, charging time, tharging time, tharg									-	-	-	-	-	-				
phone surrent Trip11, Trip12, Trip13 •	U																	
prove sequence current li Image: fault and earth fault this counters Image: fault and earth fault this counters hase fault and earth fault this counters Image: fault and earth fault this counters Image: fault and earth fault this counters hase displacement to, φ ⁰ , φ ⁰ Image: fault and earth fault this counters Image: fault and earth fault this counters hase displacement to, φ ² , φ ⁰ Image: fault fault this fault this counters Image: fault fault this fault f				_		12.1			_	_								
lander door und and und by by bound of the																		
Induction (InfD), current and voltage tithd, induction (InfD), current (InfT), ldtfZ, ldtf3, induction (InfD), current (InfT), ldtfZ, ldtf3, induction (InfD), current (InfT), ldtfZ, ldtf3, induction (InfO), current (Inff), ldtfZ, ldtf3, induction (Inff), induction						_						_			_		_	
ind ind <td></td> <td>_</td>																	_	
hase displacement of 1, e2, 93	thd																_	
Induction developed in the sequence current l'i lifterential current loff11, lift2, lift3 hrough current loff11, lift3 hrough current loff11, lift2, lift3 hrough current loff				_						_								
Inside a contract of the second secon															_		_	
Internation coperating time before overload tripping laiting time after overload tripping laiting time after overload tripping laiting time after overload tripping laiting time after overload tripping laiting current and time tart inhibit time umber of starts before inhibition nbalance ratio / negative sequence current l'i ifferential current ldff1, ldff2, ldff3 hrough current 11, l2, lt3 urrent phase displacement 0 parent phase-to-phase impedances Z21, Z32, Z13 ifference in amplitude, frequency and phase of latges compared for synchro-check ⁽⁴⁾ apacitor unbalance current and capacitance Switchgear diagnosis ANSI code T/VT supervision indication and time tagging of events ⁽⁶⁾ (⁶⁾ umber of parating sime, charging time, umber of operations, operating time, charging time, umber of acking out operations, IEC 608 870-5-103, DNP3 or IEC 61850 emote portocion setting ⁽⁶⁾ I I I I I I I I I I I I I I I I I I I		-													-	-		
a traing current and time after overload tripping intervention of the traing current overload tripping intervention interventintervention intervention intervention interventi															_		_	
The dama grante date of perfaming into the original date of the																		
tarting current and time tarting current and time tarting current and time tarting current and time tarting current tarting cu		_	-	-											_		_	
tart inipititine umber of starts before inhibition inhalance ratio / negative sequence current I iii . Lift2, lift3 infinitive sequence impedance Zd parent positive sequence impedances Z21, Z32, Z13		-				-	-	-				-	-	-	_		- T-	
<pre>under differential current lift i, lift i</pre>						_						_					_	
And constructions and robust in the sequence current l'i inferencial current ldiff1, ldiff2, ldiff3 hrough current lti, lt2, lt3 urrent phase displacement 0 intervent phase impedances Z21, Z32, Z13																		
Inductor during the organic or		-						_	-				-	_			-	
Intervent and current It1, It2, It13 urrent phase displacement 0 parent phase displacement 0 parent phase displacement 0 parent phase impedances Z21, Z32, Z13 hird harmonic voltage, neutral point or residual ifference in amplitude, frequency and phase of oblages compared for synchro-check ⁽⁴⁾ apacitor unbalance current and capacitance T / VT supervision 60/60FL T / VT supervision 60/60FL T / VT supervision 74 unulative breaking current unulative breaking current unuber of operations, operating time, charging time, umber of racking out operations (³⁾ Modbus communication, IEC 60 870-5-103, DNP3 or IEC 61850 leasurement readout (⁶⁾⁽⁶⁾ amote ontrol orders (⁶⁾⁽⁶⁾	° i	_				-						-					-	
Internet phase displacement 0 pparent positive sequence impedances Z1, Z32, Z13 parent phase-to-phase impedances Z1, Z32, Z13 provide a set of the set																		
And the phase densities of the sequence impedances Z21, Z32, Z13										_			_	_				
parent phase to phase impedances Z21, Z32, Z13 Image and the second			-	-	-			-			_				-	-	10.	
init d harmonic voltage, neutral point or residual Image: Compared for synchro-check (%) Image: Compared for synchro-check (%) <td>pparent positive sequence impedances Zu pparent phase-to-phase impedances Z21_Z32_Z1</td> <td>3</td> <td>-</td> <td>-</td> <td></td> <td>1 E - 1</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>1 E - 1</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>١÷.</td>	pparent positive sequence impedances Zu pparent phase-to-phase impedances Z21_Z32_Z1	3	-	-		1 E - 1	-		-	-	-	1 E - 1		-	-	-	١÷.	
ifference in amplitude, frequency and phase of oltages compared for synchro-check ⁽⁴⁾ apacitor unbalance current and capacitance Switchgear diagnosis ANSI code T/VT supervision 60/60FL 60/						-											-	
lages compared for synchro-check ⁽⁴⁾ apacitor unbalance current and capacitance T / VT supervision 60/60FL 74 CURRENT OF A CURREN																	-	
apacitor unbalance current and capacitance Switchgear diagnosis ANSI code T / VT supervision 60/60FL ip circuit supervision (2) 74 ouxiliary power supply monitoring Image: Control of the supervision (2) unulative breaking current Image: Control of the supervision (2) unulative breaking current Image: Control of the supervision (2) Image: Control of the supervision (3) Image: Control of the supervision (4) Image: Control of the supervision (5) Image: Control of the supervision (6) Image: Control of the supervision of																		
Switchgear diagnosis ANSI code T/VT supervision 60/60FL Image: Constraint of the state of																	•	
T / VT supervision 60/60FL Image: Constraint of the supervision (2) 74 Image: Constraint of the supervision (2) Image: Constraint of the supervision (3) Image: Constraint of the supervision		aha																
ip circuit supervision (2) 74 ip circuit supervision (2) 74 in the power supply monitoring in the power suply monitoring in the power supply monitoring	0				-		-											
Juiliary power supply monitoring Juiliary power supply monitoring Juiliary power supply monitoring Jumulative breaking current Jumber of operations, operating time, charging time, Jumber of operations, operating time, charging time, Jumber of racking out operations (2) Modbus communication, IEC 60 870-5-103, DNP3 or IEC 61850 easurement readout (⁶⁾⁽⁶⁾ easurement readout (⁶⁾⁽⁶⁾ ansfer of disturbance recording data (⁶⁾⁽⁶⁾ COSE message IEC 61850 (⁶⁾ Image data (⁶⁾⁽⁶⁾ Image					_												_	
Jumulative breaking current Under of operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time, Umber of racking out operations, operating time, charging time,						-		-										
Inductive oreating string time, charging time, cha																	_	
Anisot of operations, operating (n) Imper of racking out operations (n) Modbus communication, IEC 60 870-5-103, DNP3 or IEC 61850 easurement readout (%)(%) Imper of racking out operations (n) emote indication and time tagging of events (%)(%) Imper of racking out operations (n) emote control orders (%)(%) Imper of racking out operations (n) Imper of disturbance recording data (%)(%) Imper of disturbance recording data (%)(%) OOSE message IEC 61850 (%) Imper of Imper of Imper operations (%)																		
easurement readout (%)(%) I<	umber of racking out operations ⁽²⁾	,							U	U	U			Ц	U			
easurement readout (⁵⁾⁽⁶⁾ I I	Modbus communication, IEC 60	870-5-	103.	DNP	3 01	r IEC	618	50										
emote indication and time tagging of events ⁽⁵⁾⁽⁶⁾ I I																		
emote control orders ^{(b)(b)} I I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Ansfer of disturbance recording data ^{(b)(b)} I I </td <td>emote control orders ^{(5) (6)}</td> <td></td>	emote control orders ^{(5) (6)}																	
OOSE message IEC 61850 ⁽⁶⁾																		
OOSE message net of 1650 W	5																	
			Ц	Ц	U	Ц	Ц		Ц	Ц	Ľ	Ц		Ц			U	

(2) According to parameter setting and optional MES120 input/output modules.
(3) With optional MET148-2 temperature input modules.
(4) With optional MCS025 synchro-check module.
(5) With ACE949-2, ACE959, ACE937, ACE969TP-2, ACE969FO-2 or ECI850 communication interface.
(6) With ACE850TP or ACE850FO communication interface.

Functions Sepam series 80

Sensor inputs

Sepam series 80 has analog inputs that are connected to the measurement sensors required for applications:

■ main analog inputs, available on all types of Sepam series 80:

- □ 3 phase current inputs I1, I2, I3
- □ 1 residual current input I0
- □ 3 phase voltage inputs V1, V2, V3
- □ 1 residual voltage input V0
- additional analog inputs, dependent on the type of Sepam:
- □ 3 additional phase current inputs l'1, l'2, l'3
- □ 1 additional residual current input I'0
- □ 3 additional phase voltage inputs V'1, V'2, V'3
- □ 1 additional residual voltage input V'0

The table below lists the analog inputs available according to the type of Sepam series 80.

Sepam G88 sensor inputs.

		S80, S81, S82, S84	T81, T82, M81, G82	T87, M87, M88, G87, G88	B80	B83	C86
Phase current inputs	Main channel	11, 12, 13	1, 2, 3	11, 12, 13	11, 12, 13	11, 12, 13	11, 12, 13
	Additional channels			l'1, l'2, l'3			
Residual current inputs	Main channel	10	10	10	10	10	10
	Additional channels	l'0	ľO	ľO	ľO		
Unbalance current inputs for capacitor steps							l'1, l'2, l'3, l'0
Phase voltage inputs	Main channel	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32	V1, V2, V3 or U21, U32
	Additional channels				V'1 or U'21	V'1, V'2, V'3 or U'21, U'32	
Residual voltage inputs	Main channel	V0	V0	V0	V0 ⁽¹⁾	V0	V0
	Additional channel					V'0	
Temperature inputs (on MET148-2 module)			T1 to T16	T1 to T16			T1 to T16

Note: by extension, an additional measurement (current or voltage) is a value measured via an additional analog channel.

(1) Available with phase voltage U21, U32.

General settings

The general settings define the characteristics of the measurement sensors connected to Sepam and determine the performance of the metering and protection functions used. They are accessed via the SFT2841 setting software "General Characteristics", "CT-VT Sensors" and "Particular characteristics" tabs.

Gene	ral settings	Selection	Value
ln, l'n	Rated phase current	2 or 31A/5ACTs	1 A to 6250 A
	(sensor primary current)	3 LPCTs	25 A to 3150 A ⁽¹⁾
'n	Unbalance current sensor rating (capacitor application)	CT1A/2A/5A	1 A to 30 A
lb	Base current, according to rated power of equipment		0.2 to 1.3 In
ľb	Base current on additional channels	Applications with transformer	l'b = lb x Un1/Un2
	(not adjustable)	Other applications	l'b = lb
ln0, l'n0	Rated residual current	Sum of 3 phase currents	See In(I'n) rated phase current
		CSH120 or CSH200 core balance CT	2 A or 20 A rating
		1 A/5 A CT + CSH30 interposing ring CT	1 A to 6250 A
		Core balance CT + ACE990 (the core balance CT ratio $1/n$ must be such that $50 \le n \le 1500$)	According to current monitored and use of ACE990
Unp,	Rated primary phase-to-phase voltage (Vnp: rated	, , , , , , , , , , , , , , , , , , , ,	220 V to 250 kV
U'np	primary phase-to-neutral voltage Vnp = Unp/ $\sqrt{3}$)		
Uns,	Rated secondary phase-to-phase voltage	3 VTs: V1, V2, V3	90 to 230 V
U'ns		2 VTs: U21, U32	90 to 120 V
		1 VT: U21	90 to 120 V
		1 VT: V1	90 to 230 V
Uns0,	Secondary zero sequence voltage for primary zero		Uns/3 or Uns/√3
U'nso	sequence voltage Unp/ $\sqrt{3}$		
Vntp	Neutral point voltage transformer primary voltage (generator application)		220 V to 250 kV
Vnts	Neutral point voltage transformer secondary voltage (generator application)		57.7 V to 133 V
fn	Rated frequency		50 Hz or 60 Hz
	Phase rotation direction		1-2-3 oru 1-3-2
	Integration period (for demand current and peak demand current and power)		5, 10, 15, 30, 60 min
	Pulse-type accumulated energy meter	Increments active energy	0.1 kWh to 5 MWh
	3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Increments reactive energy	0.1 kVARh to 5 MVARh
P	Rated transformer power		100 kVA to 999 MVA
Un1	Rated winding 1 voltage (main channels: I)		220 V to 220 kV
Un2	Rated winding 2 voltage (additional channels: I')		220 V to 400 kV
In1	Rated winding 1 current (not adjustable)		$\ln 1 = P/(\sqrt{3} Un1)$
n2	Rated winding 2 current (not adjustable)		$\ln 2 = P/(\sqrt{3} Un2)$
	Transformer vector shift		0 to 11
Ωn	Rated speed (motor, generator)		100 to 3600 rpm
२	Number of pulses per rotation (for speed acquisition)		1 to 1800 (Ωn x R/60 ≤ 1500)
	Zero speed set point		5 to 20 % of Ωn
	Number of capacitor steps		1 to 4
	Connection of capacitor steps		Star / Delta
	Capacitor step ratio	Step 1	1
		Step 2	1,2
		Step 3	1, 2, 3, 4
		Step 4	1, 2, 3, 4, 6, 8

(1) In values for LPCT, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Metering and diagnosis Description

Metering

Sepam is a precision metering unit.

All the metering and diagnosis data used for commissioning and required

for the operation and maintenance of your equipment are available locally

or remotely, expressed in the units concerned (A, V, W, etc.).

Phase current

RMS current for each phase, taking into account harmonics up to number 13. Different types of sensors may be used to meter phase

current:

■ 1 A or 5 A current transformers

LPCT type current sensors.

Residual current

Four types of residual current values are available depending on the type of Sepam and sensors connected to it:

• 2 residual currents $IO\Sigma$ and $I'O\Sigma$, calculated by the vector sum of the 3 phase currents

2 measured residual currents I0 and I'0.

Different types of sensors may be used to measure residual current:

- CSH120 or CSH200 specific core balance CT
- conventional 1 A or 5 A current transformer with

CSH30 interposing ring CT

■ any core balance CT with an ACE990 interface.

Demand current and peak demand currents

Demand current and peak demand currents are calculated according to the 3 phase currents I1, I2 and I3:

demand current is calculated over an adjustable period of 5 to 60 minutes

peak demand current is the greatest demand current and indicates the current drawn by peak loads. Peak demand currents may be cleared.

Voltage and frequency

The following measurements are available according to the voltage sensors connected:

- phase-to-neutral voltages V1, V2, V3 and V'1, V'2,
- V'3
- phase-to-phase voltages U21, U32, U13 and U'21, U'32, U'13
- residual voltage V0, V'0 or neutral point voltage Vnt
- positive sequence voltage Vd, V'd and negative
- sequence voltage Vi, V'i
- frequency measured on the main and additional voltage channels.

Power

Powers are calculated according to the phase currents I1, I2 and I3:

- active power
- reactive power
- apparent power
- **•** power factor ($\cos \phi$).

According to the sensors used, power calculations may be based on the 2 or 3 wattmeter method.

The 2 wattmeter method is only accurate when there is no residual current and it is not applicable if the neutral is distributed.

The 3 wattmeter method gives an accurate calculation of 3-phase and phase by phase powers in all cases, regardless of whether or not the neutral is distributed.

Peak demand powers

The greatest demand active and reactive power values calculated over the same period as the demand current. The peak demand powers may be cleared.

Energy

 4 accumulated energies calculated according to voltages and phase currents I1, I2 and I3 measured: active energy and reactive energy in both directions
 1 to 4 additional accumulated energy meters for the acquisition of active or reactive

energy pulses from external meters.

Temperature

Accurate measurement of temperature inside equipment fitted with Pt100, Ni100 or Ni120 type RTDs, connected to the optional remote MET148-2 module.

Rotation speed

Calculated by the counting of pulses transmitted by a proximity sensor at each passage of a cam driven by the rotation of the motor or generator shaft. Acquisition of pulses on a logic input.

Phasor diagram

A phasor diagram is displayed by SFT2841 software and the mimic-based UMI to check cabling and assist in the setting and commissioning of directional and differential protection functions.

According to the connected sensors, all current and voltage information can be selected for display in vector form.

Description

Network diagnosis assistance

Sepam provides network power quality metering functions, and all the data on network disturbances detected by Sepam are recorded for analysis purposes.

Tripping context

Storage of tripping currents and I0, Ii, U21, U32, U13, V1, V2, V3, V0, Vi, Vd, F, P, Q, Idiff, It and Vnt values when tripping occurs. The values for the last five trips are stored.

Tripping current

Storage of the 3 phase currents and earth fault current at the time of the last Sepam trip order, to indicate fault current.

The values are stored in the tripping contexts.

Number of trips

2 trip counters:

■ number of phase fault trips, incremented by each trip triggered by ANSI 50/51, 50V/51V and 67 protection functions

number of earth fault trips, incremented by each trip triggered by ANSI 50N/51 and 67N/67NC protection functions.

Negative sequence / unbalance

Negative sequence component of phase currents I1, I2 and I3 (and I'1, I'2 and I'3), indicating the degree of unbalance in the power supplied to the protected equipment.

Total harmonic distortion

Two THD values calculated to assess network power quality, taking into account harmonics up to number 13:

- current THD, calculated according to I1
- voltage THD, calculated according to V1 or U21.

Phase displacement

- phase displacement φ 1, φ 2, φ 3 between phase currents I1, I2, I3 and voltages V1, V2, V3 respectively
- phase displacement φ0 between residual current and residual voltage.

Disturbance recording

Recording triggered by user-set events:

- all sampled values of measured currents and voltages
- status of all logic inputs and outputs logic data: pick-up,

Recording characteristics

RADE format	Adjustable from 1 to 19 Adjustable from 1 to 11 s				
	Adjustable from 1 to 11 s				
	Adjustable from 1 to 11 s				
Number of samples per period					
Duration of recording prior to occurrence of the event					
ability					
12 samples per period	36 samples per period				
22 s	7 s				
18 s	6 s				
	ability 12 samples per period 22 s				

Voltage comparison for synchro-check

For the synchro-check function, the MCS025 module continuously measures the amplitude, frequency and phase differences between the 2 voltages to be checked.

Out-of-sync context

Storage of amplitude, frequency and phase differences between the 2 voltages measured by the MCS025 module when a closing order is inhibited by the synchrocheck function.

Description

Machine diagnosis assistance

Sepam assists facility managers by providing:

- data on the operation of their machines
- predictive data to optimize process management
- useful data to facilitate protection function setting and implementation.

Thermal capacity used

Equivalent temperature buildup in the machine, calculated by the thermal overload protection function.

Displayed as a percentage of rated thermal capacity.

Remaining operating time before overload tripping

Predictive data calculated by the thermal overload protection function. The time is used by facility managers to optimize process management in real time by deciding to:

■ interrupt according to procedures

continue operation with inhibition of thermal protection on overloaded machine.

Waiting time after overload tripping

Predictive data calculated by the thermal overload protection function. Waiting time to avoid further tripping of thermal overload protection by premature re-energizing of insufficiently cooled down equipment.

Running hours counter / operating time

Equipment is considered to be running whenever a phase current is over 0.1 lb. Cumulative operating time is given in hours.

Motor starting / overload current and time

A motor is considered to be starting or overloaded when a phase current is over 1.2 lb. For each start / overload, Sepam stores:

- maximum current drawn by the motor
- starting / overload time.

The values are stored until the following start / overload.

Number of starts before inhibition/start inhibit time

Indicates the number of starts still allowed by the starts per hour protection function and, if the number is zero, the waiting time before starting is allowed again.

Differential and through current

Values calculated to facilitate the implementation of ANSI 87T and 87M differential protection functions.

Current phase displacement

Phase shift between the main phase currents and additional phase currents to facilitate implementation of ANSI 87T differential protection function.

Apparent positive sequence impedance Zd

Value calculated to facilitate the implementation of the underimpedance field loss protection (ANSI 40).

Apparent phase-to-phase impedances Z21, Z32, Z13

Values calculated to facilitate the implementation of the backup underimpedance protection function (ANSI 21B).

Third harmonic neutral point or residual voltage

Values measured to facilitate the implementation of the third harmonic undervoltage / 100 % stator earth fault protection function (ANSI 27TN/64G2).

Capacitance

Measurement, for each phase, of the total capacitance of the connected capacitor bank steps. This measurement is used to monitor the condition of the capacitors.

Capacitor unbalance current

Measurement of the unbalance current for each capacitor bank step. This measurement is possible when the steps are connected in a double star arrangement.

Description

Switchgear diagnosis assistance

Switchgear diagnosis data give facility managers information on:

- mechanical condition of breaking device
- Sepam auxiliaries

and assist them for preventive and curative switchgear maintenance actions.

The data are to be compared to switchgear manufacturer data.

ANSI 60/60FL - CT/VT supervision

Used to monitor the entire metering chain:

- CT and VT sensors
- connection

Sepam analog inputs.

Monitoring includes:

- consistency checking of currents and voltages measured
- acquisition of phase or residual voltage transformer protection fuse blown contacts.

In the event of a loss of current or voltage measurement data, the assigned protection functions may be inhibited to avoid nuisance tripping.

ANSI 74 - Trip/closing circuit supervision

To detect trip circuit and closing circuit failures, Sepam monitors:

- shunt trip coil connection
- closing coil connection
- matching of breaking device open/closed position contacts
- execution of breaking device open and close orders.

The trip and closing circuits are only supervised when connected as shown below.

Connection for shunt trip coil monitoring.

Connection for undervoltage trip coil monitoring.

Connection for closing circuit supervision

Auxiliary power supply monitoring

The voltage rating of Sepam's auxiliary supply should be set between 24 V DC and 250 V DC.

If the auxiliary supply drifts, 2 alarms may be triggered:

■ high set point alarm, adjustable from 105 % to 150 % of rated supply (maximum 275 V)

■ low set point alarm, adjustable from 60 % to 95 % of rated supply (minimum 20 V).

Cumulative breaking current monitoring

Six cumulative currents are proposed to assess breaking device pole condition:

- total cumulative breaking current
- cumulative breaking current between 0 and 2 In
- cumulative breaking current between 2 In and 5 In
- cumulative breaking current between 5 In and 10 In
- cumulative breaking current between 10 In and 40 In
- cumulative breaking current > 40 In.

Each time the breaking device opens, the breaking current is added to the cumulative total and to the appropriate range of cumulative breaking current.

Cumulative breaking current is given in (kA)².

An alarm can be generated when the total cumulative breaking current exceeds a set point.

Number of operations

Cumulative number of opening operations performed by the breaking device.

Circuit breaker operating time and charging time Number of rackouts

Used to assess the condition of the breaking device operating mechanism.

Description

Sepam self-diagnosis

Sepam includes a number of self-tests carried out in the base unit and optional modules. The purpose of the self-tests is to:

- detect internal failures that may cause nuisance tripping or failed fault tripping
- put Sepam in fail-safe position to avoid any unwanted operation
- alert the facility manager of the need for maintenance operations.

Internal failure

Two categories of internal failures are monitored:

■ major failures: Sepam shutdown (to fail-safe position).

The protection functions are inhibited, the output relays are forced to drop out and the "Watchdog" output indicates Sepam shutdown

■ minor failures: downgraded Sepam operation.

Sepam's main functions are operational and equipment protection is ensured.

Battery monitoring

Monitoring of battery voltage to guarantee data is saved in the event of an outage. A battery fault generates an alarm.

Detection of plugged connectors

The system checks that the current or voltage sensors are plugged in. A missing connector is a major failure.

Configuration checking

The system checks that the optional modules configured are present and working correctly.

The absence or failure of a remote module is a minor failure, the absence or failure of a logic input/output module is a major failure.

Metering and diagnosis Characteristics

	Measurement range	Accuracy ⁽¹⁾	MSA141	Savino
	incucarententrange	, nooul dog		
	0.02 to 40 lp	+0.5%		
Calculated			•	
Measureu				
Main channels (LI)			┤┏	
Additional channels (V')				
	·			
	·			
Main channels (f)	25 to 65 Hz	±0.01 Hz	•	
Additional channels (f')		±0.05 Hz		
	· · · · · · · · · · · · · · · · · · ·			
:)	0.008 Sn to 999 MW			
ase)	0.008 Sn to 999 MVAR			
ase)	0.008 Sn to 999 MVA	±1%		
	0.008 Sn to 999 MW	±1%		
	0.008 Sn to 999 MVAR	±1%		
	-1 to + 1 (CAP/IND)	±0.01	•	
	0 to 2.1 x 10 ⁸ MWh	±1 % ±1 digit		
	0 to 2.1 x 10 ⁸ MVARh	±1 % ±1 digit		
		e e e e e e e e e e e e e e e e e e e		
	or -22 °F to +392 °F	±1,8 °F from +68 to +384 °F		
	0 to 7200 rpm	±1 rpm		
tance				
	0.02 to 40 ln	+5 %		
			-	
•				
3 (between V and I)	0 to 359	±2*		_
	0 to 359°	±2°		
tance				
	0 to 800 %	±1 %	•	
	(100 % for phase I = Ib)			
re overload tripping	0 to 999 min	±1 min		
bing	0 to 999 min	±1 min		
ing time	0 to 65535 hours	±1 % or ±0.5 h		
	1.2 lb to 40 ln	±5 %		
	0 to 300 s	±300 ms		
 on		1	1	
<u> </u>		±1 min	1	
			+	
(between Lend P)		±1% ±2°		
(between I and I')	0 to 359°			
700 710	0 to 200 kΩ	±5 % ±1 %		
Z32, Z13		+ 1 %		
Itage	0.2 to 30 % of Vnp			
	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp	±1 %		
Itage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F	±1% ±5%		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp	±1 %		
Itage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F	±1% ±5%		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F	±1% ±5%		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F 0.02 to 40 l'n	±1% ±5% ±5%		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F 0.02 to 40 l'n 0 to 65535 kA ²	±1% ±5% ±5% ±10%		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F 0.02 to 40 l'n 0 to 65535 kA ² 24 V DC to 250 V DC 0 to 4 x 10 ⁹	±1% ±5% ±5% ±10% ±4 V or ±10% -		
ltage	0.2 to 30 % of Vnp 0.2 to 90 % of Vnp 0 to 30 F 0.02 to 40 l'n 0 to 65535 kA ² 24 V DC to 250 V DC	±1% ±5% ±5% ±10% ±4 V or ±10%		
	e) ase) ase) ase) ase) ase) ase) ase) as	0.02 to 40 in Calculated 0.005 to 20 In0 Measured 0.005 to 20 In0 0.02 to 40 in 0.02 to 40 in Main channels (U) 0.05 to 1.2 Unp Additional channels (V') 0.05 to 1.2 Vnp Additional channels (V') 0.05 to 1.2 Vnp Additional channels (V') 0.05 to 1.2 Vnp Main channels (V) 0.05 to 1.2 Vnp 0.05 to 1.2 Vnp 0.05 to 1.2 Vnp Main channels (f) 25 to 55 Hz (fn = 50 Hz) Sto 55 Hz (fn = 50 Hz) 55 to 65 Hz (fn = 60 Hz) Additional channels (f) 45 to 55 Hz (fn = 60 Hz) Additional channels (f) 45 to 55 Hz (fn = 60 Hz) Sto 65 Hz (fn = 60 Hz) 50 to 61 Hz) e) 0.008 Sn to 999 MW ase) 0.008 Sn to 999 MVAR ase) 0.008 Sn to 999 MVAR - 1 to + 1 (CAP/IND) - 0 to 2.1 x 10° MVAR -30 °C to +200 °C or -22 °F to +392 °F 0 to 100 % 0 to 359° ent ot 00 % of Ib 0 to 100 % pe 0 to 100 % ge <td>0.02 to 40 ln ±0.5 % Calculated 0.005 to 20 ln0 ±1 % 0.02 to 40 ln ±0.5 % 0.02 to 40 ln ±0.5 % Additional channels (U) 0.05 to 1.2 Unp ±0.5 % Additional channels (V) 0.05 to 1.2 Unp ±1.5 % Additional channels (V) 0.05 to 1.2 Vnp ±1.5 % Additional channels (V) 0.05 to 1.2 Vnp ±1.8 % 0.05 to 1.2 Vnp ±1.8 % 0.05 to 1.2 Vnp 4.1 % 0.05 to 1.2 Vnp ±2.8 % 0.05 to 1.2 Vnp ±2.8 % 0.05 to 1.2 Vnp 4.2 % 0.05 to 1.2 Vnp ±2.8 % Main channels (f) 25 to 65 Hz (m = 60 Hz) ±0.01 Hz Additional channels (f) 25 to 65 Hz (m = 60 Hz) ±0.05 Hz se) 0.008 Sn to 999 MWA ±1 % ase) 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % 10 to 2.1 x 10° MWAR ±1 % 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % <td>0.02 to 40 In ±0.5 % • Calculated 0.005 to 20 in0 ±1 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • Additional channels (U) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • 0.05 to 13 Vnp ±1 % • • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • see) 0.008 Sn to 999 MVA ±1 % • • 0.008 Sn to 999 MVA ±1 % • see) 0.008 Sn to 999 MVAR ±1 % • 0.008 Sn to 999 MVAR ±1 % • 0.002 tx 10 0 N <td< td=""></td<></td></td>	0.02 to 40 ln ±0.5 % Calculated 0.005 to 20 ln0 ±1 % 0.02 to 40 ln ±0.5 % 0.02 to 40 ln ±0.5 % Additional channels (U) 0.05 to 1.2 Unp ±0.5 % Additional channels (V) 0.05 to 1.2 Unp ±1.5 % Additional channels (V) 0.05 to 1.2 Vnp ±1.5 % Additional channels (V) 0.05 to 1.2 Vnp ±1.8 % 0.05 to 1.2 Vnp ±1.8 % 0.05 to 1.2 Vnp 4.1 % 0.05 to 1.2 Vnp ±2.8 % 0.05 to 1.2 Vnp ±2.8 % 0.05 to 1.2 Vnp 4.2 % 0.05 to 1.2 Vnp ±2.8 % Main channels (f) 25 to 65 Hz (m = 60 Hz) ±0.01 Hz Additional channels (f) 25 to 65 Hz (m = 60 Hz) ±0.05 Hz se) 0.008 Sn to 999 MWA ±1 % ase) 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % 10 to 2.1 x 10° MWAR ±1 % 0.008 Sn to 999 MWA ±1 % 0.008 Sn to 999 MWA ±1 % <td>0.02 to 40 In ±0.5 % • Calculated 0.005 to 20 in0 ±1 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • Additional channels (U) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • 0.05 to 13 Vnp ±1 % • • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • see) 0.008 Sn to 999 MVA ±1 % • • 0.008 Sn to 999 MVA ±1 % • see) 0.008 Sn to 999 MVAR ±1 % • 0.008 Sn to 999 MVAR ±1 % • 0.002 tx 10 0 N <td< td=""></td<></td>	0.02 to 40 In ±0.5 % • Calculated 0.005 to 20 in0 ±1 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • 0.02 to 40 In ±0.5 % • Additional channels (U) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Unp ±1 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • Additional channels (V) 0.05 to 12 Vnp ±2 % • 0.05 to 13 Vnp ±1 % • • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • Additional channels (f) 25 to 65 Hz ±0.01 Hz • see) 0.008 Sn to 999 MVA ±1 % • • 0.008 Sn to 999 MVA ±1 % • see) 0.008 Sn to 999 MVAR ±1 % • 0.008 Sn to 999 MVAR ±1 % • 0.002 tx 10 0 N <td< td=""></td<>

available on MSA141 analog output module, according to setup
 saved in the event of auxiliary supply outage, even without battery
 saved by battery in the event of auxiliary supply outage.
 (1) Under reference conditions (IEC 60255-6), typical accuracy at In or Unp, cos φ > 0.8.

Current protection functions

ANSI 50/51 - Phase overcurrent

Phase-to-phase short-circuit protection.

- 2 modes:
- overcurrent protection sensitive to the highest phase current measured
- machine differential protection sensitive to the

highest differential phase currents obtained in selfbalancing schemes.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve
- with or without timer hold

■ tripping confirmed or unconfirmed, according to parameter setting:

□ unconfirmed tripping: standard

□ tripping confirmed by negative sequence overvoltage protection (ANSI 47, unit 1), as backup for distant 2-phase short-circuits

□ tripping confirmed by undervoltage protection (ANSI 27, unit 1), as backup for phase-to-phase shortcircuits in networks with low short-circuit power.

ANSI 50N/51N or 50G/51G - Earth fault

Earth fault protection based on measured or calculated residual current values:

ANSI 50N/51N: residual current calculated or

measured by 3 phase current sensors

■ ANSI 50G/51G: residual current measured directly by a specific sensor.

Characteristics

■ 2 groups of settings

- definite time (DT), IDMT (choice of 17 standardized IDMT curves) or customized curve
- with or without timer hold

■ second harmonic restraint to ensure stability during transformer energizing, activated by parameter setting.

ANSI 50BF - Breaker failure

If a breaker fails to be triggered by a tripping order, as detected by the non-extinction of the fault current, this backup protection sends a tripping order to the upstream or adjacent breakers.

ANSI 46 - Negative sequence / unbalance

Protection against phase unbalance, detected by the measurement of negative sequence current. ■ sensitive protection to detect 2-phase faults at the

ends of long lines ■ protection of equipment against temperature buildup, caused by an unbalanced power supply, phase inversion or loss of phase, and against phase current unbalance

Characteristi cs

■ 1 definite time (DT) curve

■ 9 IDMT curves: 4 IEC curves and 3 IEEE curves, 1 ANSI curve in RI² and 1 specific Schneider curve

ANSI 49RMS - Thermal overload

- Protection against thermal damage caused by overloads on
- machines (transformers, motors or generators)
- cables
- capacitors

The thermal capacity used is calculated according to a mathematical model which takes into account:

- current RMS values
- ambient temperature
- negative sequence current, a cause of motor rotor temperature rise.

The thermal capacity used calculations may be used to calculate predictive data for process control assistance.

The protection may be inhibited by a logic input when required by process control conditions.

Thermal overload for machines - Characteristics

- 2 groups of settings
- 1 adjustable alarm set point
- 1 adjustable tripping set point

■ adjustable initial thermal capacity used setting, to adapt protection characteristics to fit manufacturer's thermal withstand curves

equipment heating and cooling time constants.

The cooling time constant may be calculated automatically based on measurement of the equipment temperature by a sensor.

Thermal overload for cables - Characteristics

- 1 group of settinas
- cable current carrying capacity, which determines alarm and trip set points
- cable heating and cooling time constants.

Thermal overload for capacitors - Characteristics

- 1 group of settings
- alarm current, which determines the alarm set point
- overload current, which determines the tripping set point
- hot tripping time and current setting, which determine a point on the tripping curve.

ANSI 51C - Capacitor bank unbalance

Detection of capacitor step internal faults by measuring the unbalance current flowing between the two neutral points of a step connected in a double star arrangement. Four unbalance currents can be measured to protect up to 4 steps.

Characteristics

- 2 set points per step
- definite time (DT) curve.

Recloser

ANSI 79

Automation device used to limit down time after tripping due to transient or semi-permanent faults on overhead lines. The recloser orders automatic reclosing of the breaking device after the time delay required to restore the insulation has elapsed.

Recloser operation is easy to adapt for different operating modes by parameter setting.

Characteristics

■ 1 to 4 reclosing cycles, each cycle has an adjustable dead time

■ adjustable, independent reclaim time and safety time until recloser ready time delays

cycle activation linked to instantaneous or time-

delayed short-circuit protection function (ANSI 50/51, 50N/51N, 67, 67N/67NC) outputs by parameter setting ■ inhibition/locking out of recloser by logic input.

Synchro-check

ANSI 25

This function checks the voltages upstream and downstream of a circuit breaker and allows closing when the differences in amplitude, frequency and phase are within authorized limits.

Characteristics

■ adjustable and independent set points for differences in voltage, frequency and phase

■ adjustable lead time to take into account the circuitbreaker closing time

■ 5 possible operating modes to take no-voltage conditions into account.

Differential protection functions

ANSI 64REF - Restricted earth fault differential

Detection of phase-to-earth faults on 3-phase windings with earthed neutral, by comparison of residual current calculated from the 3 phase currents and residual current measured at the neutral point.

Characteristics

instantaneous tripping

percentage-based characteristic with fixed slope and adjustable low set point
 more sensitive than transformer or machine differential protection.

ANSI 87T - Transformer and transformer-machine unit differential (2 windings)

Phase-to-phase short-circuit protection of two-winding transformers or transformermachine units.

Protection based on phase by phase comparison of the primary and secondary currents with:

■ amplitude and phase correction of the currents in each winding according to the transformer vector shift and the voltage values set

■ clearance of zero sequence current from the primary and secondary windings (suitable for all earthing systems).

Characteristics

■ instantaneous tripping

adjustable high set point for fast tripping for violent faults, with no restraint

percentage-based characteristic with two adjustable slopes and adjustable low set point

restraint based on percentage of harmonics. These restraints prevent nuisance tripping during transformer energizing, during faults outside the zone that provoke saturation of the current transformers and during operation of a transformer supplied with excessive voltage (overfluxing).

□ self-adapting neural network restraint: this restraint analyzes the percentage of harmonics 2 and 5 as well as differential and through currents

 $\hfill\square$ restraint based on the percentage of harmonic 2 per phase or total

□ restraint based on the percentage of harmonic 5 per phase or total.

Self-adapting restraint is exclusive with respect to restraints on the percentage of harmonic 2 or on the percentage of harmonic 5.

 restraint on energization. This restraint, based on the magnetizing current of the transformer or on a logic equation or Logipam, ensures stability of transformers that have low harmonic percentages on energization
 fast restraint upon loss of sensor.

ANSI 87M - Machine differential

Phase-to-phase short-circuit protection, based on phase by phase comparison of the currents on motor and generator windings.

Characteristics

- instantaneous tripping
- fixed high set point for fast tripping for violent faults, with no restraint
- percentage-based characteristic with fixed slope and adjustable low set point
- tripping restraint according to percentage characteristic activated by detection of:
- external fault or machine starting
- □ sensor saturation or disconnection
- □ transformer energizing (harmonic 2 restraint)

101

Directional current protection

ANSI 67 - Directional phase overcurrent

Phase-to-phase short-circuit protection, with selective tripping according to fault current direction.

It comprises a phase overcurrent function associated with direction detection, and picks up if the phase overcurrent function in the chosen direction (line or busbar) is activated for at least one of the 3 phases.

Characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- choice of tripping direction
- definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve

■ with voltage memory to make the protection insensitive to loss of polarization voltage at the time of the fault

with or without timer hold.

ANSI 67N/67NC - Directional earth fault

Earth fault protection, with selective tripping according to fault current direction.

- 2 types of operation:
- type 1, projection
- type 2, according to the magnitude of the residual current phasor.

ANSI 67N/67NC type 1

Directional earth fault protection for impedant, isolated or compensated neutral systems, based on the projection of measured residual current.

Type 1 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- characteristic projection angle
- no timer hold

■ with voltage memory to make the protection insensitive to recurrent faults in compensated neutral systems.

ANSI 67N/67NC type 2

Directional overcurrent protection for impedance and solidly earthed systems, based on measured or calculated residual current.

It comprises an earth fault function associated with direction detection, and picks up if the earth fault function in the chosen direction (line or busbar) is activated.

- **Type 2 characteristics**
- 2 groups of settings
- instantaneous or time-delayed tripping

■ definite time (DT), IDMT (choice of 16 standardized IDMT curves) or customized curve

- choice of tripping direction
- with or without timer hold.

Tripping characteristic of ANSI 67N/67NC type 2 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Tripping characteristic of ANSI 67N/67NC type 3 protection.

Schneider

102

ANSI 67N/67NC type 3

Directional overcurrent protection for distribution networks in which the neutral earthing system varies according to the operating mode, based on measured residual current.

It comprises an earth fault function associated with direction detection (angular sector tripping zone defined by 2 adjustable angles), and picks up if the earth fault function in the chosen direction (line or busbar) is activated. This protectionfunction complies with the Enel DK5600 specification.

Type 3 characteristics

- 2 groups of settings
- instantaneous or time-delayed tripping
- definite time (DT) curve
- choice of tripping direction
- no timer hold

Tripping characteristic of ANSI 67N/67NC type 1 protection (characteristic angle $\theta 0 \neq 0^{\circ}$).

Directional power protection Machine protection functions functions

ANSI 32P - Directional active overpower

Two-way protection based on calculated active power, for the following applications:

 \blacksquare active overpower protection to detect overloads and allow load shedding

reverse active power protection:

 □ against generators running like motors when the generators consume active power
 □ against motors running like generators when the motors supply active power.

ANSI 32Q - Directional reactive overpower

Two-way protection based on calculated reactive power to detect field loss on synchronous machines: reactive overpower protection for motors which

consume more reactive power with field loss ■ reverse reactive overpower protection for generators which consume reactive power with field loss.

ANSI 37P - Directional active underpower

Two-way protection based on calculated active power Checking of active power flows:

to adapt the number of parallel sources to fit the network load power demand

• to create an isolated system in an installation with its own generating unit.

ANSI 37 - Phase undercurrent

Protection of pumps against the consequences of a loss of priming by the detection of motor no-load operation.

It is sensitive to a minimum of current in phase 1, remains stable during breaker tripping and may be inhibited by a logic input.

ANSI 48/51LR - Locked rotor / excessive starting time

Protection of motors against overheating caused by:

■ excessive motor starting time due to overloads (e.g. conveyor) or insufficient supply voltage.

The reacceleration of a motor that is not shut down, indicated by a logic input, may be considered as starting.

■ locked rotor due to motor load (e.g. crusher):

□ in normal operation, after a normal start

□ directly upon starting, before the detection of excessive starting time, with detection of locked rotor by a zero speed detector connected to a logic input, or by the underspeed function.

ANSI 66 - Starts per hour

Protection against motor overheating caused by:

■ too frequent starts: motor energizing is inhibited when the maximum allowable number of starts is reached, after counting of:

□ starts per hour (or adjustable period)

□ consecutive motor hot or cold starts (reacceleration of a motor that is not shut down, indicated by a logic input, may be counted as a start)

■ starts too close together in time: motor re-energizing after a shutdown is only allowed after an adjustable waiting time.

ANSI 40 - Field loss (underimpedance)

Protection of synchronous machines against field loss, based on the calculation of positive sequence impedance on the machine terminals or transformer terminals in the case of transformer-machine units.

Characteristics

■ 2 circular characteristics defined by reactances Xa, Xb and Xc

2 circular tripping characteristics of ANSI 40 protection.

■ tripping when the machine's positive sequence impedance enters one of the circular characteristics.

■ definite (DT) time delay for each circular characteristic

■ setting assistance function included in SFT2841 software to calculate the values of Xa, Xb and Xc according to the electrical characteristics of the machine (and transformer, when applicable).

Characteristics

DE881

ANSI 78PS - Pole slip

Protection against loss of synchronism on synchronous machines, based on calculated active power. 2 types of operation:

 tripping according to the equal-area criterion, time-delayed

tripping according to power swing (number of active power swings):

□ suitable for generators capable of withstanding high electrical and mechanical constraints

 \Box to be set as a number of rotations.

The 2 types of operation may be used independently or at the same time.

ANSI 12 - Overspeed

Detection of machine overspeed, based on the speed calculated by pulse-counting, to detect synchronous generator racing due to loss of synchronism, or for process monitoring, for example.

ANSI 14 - Underspeed

Machine speed monitoring based on the speed calculated by pulse-counting:

■ detection of machine underspeed after starting, for process monitoring, for example

■ zero speed data for detection of locked rotor upon starting.

ANSI 50V/51V - Voltage-restrained overcurrent

Phase-to-phase short-circuit protection, for generators. The current tripping set point is voltage-adjusted in order to be sensitive to faults close to the generator which cause voltage drops and lowers the short-circuit current.

Characteristics

■ instantaneous or time-delayed tripping

■ definite time (DT), IDMT (choice of 16 standardized

IDMT curves) or customized curve ■ with or without timer hold.

ANSI 21B - Underimpedance Phase-to-phase short-circuit protection, for generators, based on the calculation of apparent phase-to-phase impedance.

 $Z_{21} = \frac{U_{21}}{I_{2} - I_{1}}$

apparent impedance between phases 1 and 2.

Circular tripping characteristic of ANSI 21B protection.

■ time-delayed definite time (DT) tripping when one of the three apparent impedances enters the circular tripping characteristic.

ANSI 50/27 - Inadvertent energization

Checking of generator starting sequence to detect inadvertent energization of generators that are shut down (a generator which is energized when shut down runs like a motor).

Consists of an instantaneous phase overcurrent protection confirmed by a timedelayed undervoltage protection function.

ANSI 64G - 100 % stator earth fault

Protection of generators with earthed neutral against phase-to-earth insulation faults in stator windings. This function may be used to protect generators connected to step-up transformers

100 % stator earth fault is a combination of two protection functions:

■ ANSI 59N/64G1: neutral voltage displacement, protection of 85 % to 90 % of the stator winding, terminal end.

■ ANSI 27TN/64G2: thrid harmonic undervoltage, protection of 10 % to 20 % of the stator winding, neutral point end.

Stator winding of a generator protected 100 % by the combination of ANSI 59N and ANSI 27TN protection functions.

ANSI 27TN/64G2 - Third harmonic undervoltage

Protection of generators with earthed neutral against phase-to-earth insulation faults, by the detection of a reduction of third harmonic residual voltage.

Protects the 10 to 20 % of the stator winding, neutral point end, not protected by the ANSI 59N/64G1 function, neutral voltage displacement.

Characteristics

■ choice of 2 tripping principles, according to the sensors used:

- □ fixed third harmonic undervoltage set point
- adaptive neutral and terminal third harmonic voltage comparator set point

■ time-delayed definite time (DT) tripping.

ANSI 26/63 - Thermostat/Buchholz

Protection of transformers against temperature rise and internal faults via logic inputs linked to devices integrated in the transformer.

ANSI 38/49T - Temperature monitoring

Protection that detects abnormal temperature build-up by measuring the temperature inside equipment fitted with sensors:

- transformer: protection of primary and secondary windings
- motor and generator: protection of stator windings and bearings.

Characteristics

- 16 Pt100, NI100 or Ni120 type RTDs
- 2 adjustable independent set points for each RTD (alarm and trip).

Schneider

Voltage protection functions Frequency protection functions

ANSI 24 - Overfluxing (V/Hz)

Protection which detects overfluxing of transformer or generator magnetic circuits by calculating the ratio between the greatest phase-to-neutral or phase-tophase voltage divided by the frequency.

Characteristics

■ machine coupling to be set up

■ definite time (DT) or IDMT time delays (choice of 3 curves).

ANSI 27D - Positive sequence undervoltage

Protection of motors against faulty operation due to insufficient or unbalanced network voltage, and detection of reverse rotation direction.

ANSI 27R - Remanent undervoltage

Protection used to check that remanent voltage sustained by rotating machines has been cleared before allowing the busbar supplying the machines to be re-energized, to avoid electrical and mechanical transients.

ANSI 27 - Undervoltage

Protection of motors against voltage sags or detection of abnormally low network voltage to trigger automatic load shedding or source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

Characteristics

- definite time (DT) curve
- IDMT curve.

ANSI 59 - Overvoltage

Detection of abnormally high network voltage or checking for sufficient voltage to enable source transfer.

Works with phase-to-phase or phase-to-neutral voltage, each voltage being monitored separately.

ANSI 59N - Neutral voltage displacement

Detection of insulation faults by measuring residual voltage

ANSI 59N: in isolated neutral systems

■ ANSI 59N/64G1: in stator windings of generators with earthed neutral. Protects the 85 % to 90 % of the winding, terminal end, not protected by the ANSI 27TN/64G2 function, third harmonic undervoltage.

Characteristics

- definite time (DT) curve
- IDMT curve.

ANSI 47 - Negative sequence overvoltage

Protection against phase unbalance resulting from phase inversion, unbalanced supply or distant fault, detected by the measurement of negative sequence voltage.

ANSI 81H - Overfrequency

Detection of abnormally high frequency compared to the rated frequency, to monitor power supply quality.

ANSI 81L - Underfrequency

Detection of abnormally low frequency compared to the rated frequency, to monitor power supply quality.

The protection may be used for overall tripping or load shedding. Protection stability is ensured in the event of the loss of the main source and presence of remanent voltage by a restraint in the event of a continuous decrease of the frequency, which is activated by parameter setting.

ANSI 81R - Rate of change of frequency

Protection function used for fast disconnection of a generator or load shedding control. Based on the calculation of the frequency variation, it is insensitive to transient voltage disturbances and therefore more stable than a phase-shift protection function.

Disconnection

In installations with autonomous production means connected to a utility, the "rate of change of frequency" protection function is used to detect loss of the main system in view of opening the incoming circuit breaker to:

protect the generators from a reconnection without checking synchronization
 avoid supplying loads outside the installation.

Load shedding

The "rate of change of frequency" protection function is used for load shedding in combination with the underfrequency protection to:

either accelerate shedding in the event of a large overload

• or inhibit shedding following a sudden drop in frequency due to a problem that should not be solved by shedding.

Protection Tripping curves

Customized tripping curve Defined point by point using the SFT2841 setting and operating software tool, this curve may be used to solve all special cases involving protection coordination or revamping.

IDMT tripping curves

Current IDM T tripping curves

Multiple IDMT tripping curves are offered, to cover most applications:

- IEC curves (SIT, VIT/LTI, EIT)
- IEEE curves (MI, VI, EI)
- usual curves (UIT, RI, IAC).

Customized tripping curve set using SFT2841 software.

Equation

3

IEC curves

Curve type	Coefficient values							
	k	α	β					
Standard inverse / A	0.14	0.02	2.97					
Very inverse / B	13.5	1	1.50					
Long time inverse / B	120	1	13.33					
Extremely inverse / C	80	2	0.808					
Ultra inverse	315.2	2.5	1					

RI curve

Equation:

$$td(l) = \frac{1}{0,339 - 0,236 \left(\frac{l}{ls}\right)^{-1}} \times \frac{T}{3,1706}$$

Equation

$$td(l) = \left(\frac{A}{\left(\frac{l}{ls}\right)^p - 1} + B\right) \times \frac{T}{\beta}$$

Equation

$$td(l) = \left(A + \frac{B}{\left(\frac{l}{ls} - C\right)} + \frac{D}{\left(\frac{l}{ls} - C\right)^2} + \frac{E}{\left(\frac{l}{ls} - C\right)^3}\right) x \frac{T}{\beta}$$

IEEE curves

Curve type	Coefficie	Coefficient values							
	Α	в	р	β					
Moderately inverse	0.010	0.023	0.02	0.241					
Very inverse	3.922	0.098	2	0.138					
Extremely inverse	5.64	0.0243	2	0.081					

IAC curves

Curve type	Coeffic	Coefficient values								
	Α	В	С	D	Е	β				
Inverse	0.208	0.863	0.800	-0.418	0.195	0.297				
Very inverse	0.090	0.795	0.100	-1.288	7.958	0.165				
Extremely inverse	0.004	0.638	0.620	1.787	0.246	0.092				

Functions Sepam series 80

Protection Tripping curves

td(l)=	T	
	$\overline{1 - \left(\frac{V}{Vs}\right)}$	

With G = V/f or U/f td(G) = $\frac{1}{1}$ x T

Equation for ANSI 27 - undervoltage

Equation for ANSI 27 - undervoltage

voltage IDMT tripping curves				
Equation for ANSI 59N - Neutral voltage displacement				
$td(l) = \frac{T}{\left(\frac{V}{Vs}\right) - 1}$				

Voltage/frequency ratio IDMT tripping curves

U U	•		
Curve type		Р	
А		0.5	
В		1	
С		2	

$\left(\frac{\mathbf{G}}{\mathbf{Gs}}\right)$	-1) ^p	

107

Protection Main characteristics

Setting of IDMT tripping curves,

time delay T or TMS factor The time delays of current IDMT tripping curves (except for customized and RI curves) may be set as follows:

- time T, operating time at 10 x ls
- TMS factor, factor shown as T/b in the equations on the left.

Detection of restriking faults with adjustable timer hold.

Measurement origin: example

Timer hold

The adjustable timer hold T1 is used for:

detection of restriking faults (DT curve)

■ coordination with electromechanical relays (IDMT curve).

Timer hold may be inhibited if necessary.

2 groups of settings

Phase-to-phase and phase-to-earth short-circuit protection

Each unit has 2 groups of settings, A and B, to adapt the settings to suit the network configuration.

The active group of settings (A or B) is set by a logic input or the communication link. Example of use: normal / backup mode network

group A for network protection in normal mode, when the network is supplied by the utility

group B for network protection in backup mode, when the network is supplied by a backup generator.

Thermal overload for machines

Each unit has 2 groups of settings to protect equipment that has two operating modes.

Examples of use:

■ transformers: switching of groups of settings by logic input, according to transformer ventilation operating mode, natural or forced ventilation (ONAN or ONAF)

motors: switching of groups of settings according to current set point, to take into account the thermal withstand of motors with locked rotors.

Measurement origin

The measurement origin needs to be indicated for each unit of the protection functions that may use measurements of different origins.

The setting links a measurement to a protection unit and allows the protection units to be distributed optimally among the measurements available according to the sensors connected to the analog inputs.

Example: distribution of ANSI 50N/51N function units for transformer earth fault protection:

- 2 units linked to measured I0 for transformer primary protection
- 2 units linked to measured I'0 for transformer secondary protection
- 2 units linked to IOS for protection upstream of the transformer
- 2 units linked to I'0S for protection downstream of the transformer.

Summary table

Characteristics	Protection functions		
2 groups of settings A et B	50/51, 50N/51N, 67, 67N/67NC		
2 groups of settings, operating modes 1 and 2	49RMS Machine		
IEC IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46		
IEEE IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2, 46		
Usual IDMT curves	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2		
EPATR curves	50N/51N		
Voltage IDMT curves	27, 59N, 24		
Customized curve	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2		
Timer hold	50/51, 50N/51N, 50V/51V, 67, 67N/67NC type 2		

108
Functions	Settings		Time delays
	octango		
ANSI 12 - Overspeed	100 to 160 % of Wn		1 to 300 s
ANSI 14 - Underspeed			1 to 300 s
ANSI 14 - Oliderspeed	10 to 100 % of Wn		1 to 300 s
ANSI 21B - Underimpedance			10000
Impedance Zs	0.05 to 2.00 Vn/lb		
ANSI 24 - Overfluxing (V/Hz)	0.03 to 2.00 VII/10		
Tripping curve	Definite time		
	IDMT type A, B or C		
Gs set point	1.03 to 2 pu	Definite time	0.1 to 20000 s
		IDMT	0.1 to 1250 s
ANSI 25 - Synchro-check			
Measured voltages	Phase-to-phase	Phase-to-neutral	
Rated primary phase-to-phase voltage			
Unp sync1 (Vnp sync1 = Unp sync1/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Unp sync2 (Vnp sync2 = Unp sync2/ $\sqrt{3}$)	220 V to 250 kV	220 V to 250 kV	
Rated secondary phase-to-phase volta	ige		
Uns sync1	90 V to 120 V	90 V to 230 V	
Uns sync2	90 V to 120 V	90 V to 230 V	
Synchro-check setpoints			
dUs set point	3 % to 30 % of Unp sync1	3 % to 30 % of Vnp sync1	
dfs set point	0.05 to 0.5 Hz	0,05 to 0,5 Hz	
dPhi set point	5 to 80°	5 to 80°	
Us high set point	70 % to 110 % Unp sync1	70 % to 110 % Vnp sync1	
Us low set point	10 % to 70 % Unp sync1	10 % to 70 % Vnp sync1	
Other settings			
Lead time	0 to 0.5 s	0 to 0.5 s	
Operating modes: no-voltage conditions for which coupling is allowed	Dead1 AND Live2	Dead1 AND Live2	
or which coupling is allowed	Live1 AND Dead2	Live1 AND Dead2	
	Dead1 XOR Dead2	Dead1 XOR Dead2	
	Dead1 OR Dead2 Dead1 AND Dead2	Dead1 OR Dead2 Dead1 AND Dead2	
ANSI 27 Undervioltage (L. I.) or (Dead I AND Dead2	
ANSI 27 - Undervoltage (L-L) or (I Tripping curve	Definite time		
mpping curve	IDMT		
Set point	5 to 100 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chan	nels (II')	0.0010 000 0
ANSI 27D - Positive sequence un			
Set point and time delay	15 to 60 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chan	nels (U')	
ANSI 27R - Remanent undervolta	. ,		
Set point and time delay	5 to 100 % of Unp		0.05 to 300 s
Measurement origin	Main channels (U) or additional chan	nels (U')	
ANSI 27TN/64G2 - Third harmoni			
Vs set point (fixed)	0.2 to 20 % of Vntp		0.05 to 300 s
K set point (adaptive)	0.1 to 0.2		0.05 to 300 s
Positive sequence undervoltage	50 to 100 % of Unp		
Minimum apparent power	1 to 90 % of Sb (Sb = 3.Un.lb)		
ANSI 32P - Directional active ove	· · · · · ·		
	1 to 120 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 32Q - Directional reactive o	verpower		
	5 to 120 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 37 - Phase undercurrent			
	0.05 to 1 lb		0.05 to 300 s
ANSI 37P - Directional active und	lerpower		
	5 to 100 % of Sn ⁽¹⁾		0.1 s to 300 s
ANSI 38/49T - Temperature monit			
Alarm set point TS1	0 °C to 180 °C or 32 °F to 356 °F		
Trip set point TS2	0 °C to 180 °C or 32 °F to 356 °F		
ANSI 40 - Field loss (underimped			
Common point: Xa	0.02 Vn/lb to 0.2 Vn/lb + 187.5 kΩ		
Circle 1: Xb	$0.2 \text{ Vn/lb} \text{ to } 0.2 \text{ Vn/lb} + 187.5 \text{ k}\Omega$		0.05 to 300 s
Circle 2: Xc	$0.6 \text{ Vn/lb to 3 Vn/lb + 187.5 k}\Omega$		0.1 s to 300 s
(1) $Sn = \sqrt{3}.In.Unp.$			

(1) Sn = $\sqrt{3}$.In.Unp.

Functions	Settings		Time delay	s
ANSI 46 - Negative sequence / u			Time delay	
Fripping curve	Definite time			
hpping culve	Schneider Electric			
	IEC: SIT/A, LTI/B, VIT/B, EIT/C			
	IEEE: MI (D), VI (E), EI (F)			
	RI^2 (setting constant from 1 to 100)			
a pot point	0.1 to 5 lb	Definite time	0 1 to 200 a	
s set point		Definite time IDMT	0.1 to 300 s	
	0.1 to 5 lb (Schneider Electric)		0.1 to 1s	
	0.1 to 1 lb (IEC, IEEE)			
	0.03 to 0.2 lb (Rl ²)	-1- (1)		
Aeasurement origin	Main channels (I) or additional chann	els (l')		
ANSI 47 - Negative sequence ov	•			
Set point and time delay	1 to 50 % of Unp		0.05 to 300 s	
leasurement origin	Main channels (I) or additional chann	els (l')		
ANSI 48/51LR -Locked rotor / ex	cessive starting time			
s set point	0.5 lb to 5 lb	ST starting time	0.5 to 300 s	
		LT and LTS time delays	0.05 to 300 s	
ANSI 49RMS - Thermal overload	for cables			
Admissible current	1 to 1.73 lb			
ïme constant T1	1 to 600 mn			
ANSI 49RMS - Thermal overload				
Alarm current		1.05 lb to 1.70 lb		
rip current		1.05 lb to 1.70 lb		
Positioning of the hot tripping curve	Current optting			
ositioning of the not tripping curve	Current setting Time setting	1.02 x trip current to 2 lb 1 to 2000 minutes (variable range depe	anding on the trip ou	ront and ourrant
	Time setting	setting)	enaling on the trip cu	rent and current
ANSI 49RMS - Thermal overload	for machines	Setting	Mode 1	Mode 2
		0 - 2.25 - 4.5 - 9	Model	WOUC 2
Accounting for negative sequence compo Fime constant		0-2.23-4.3-9	T1: 1 to 600 mn	T1: 1 to 600 mr
line constant	Heating			
	Cooling	0.12.000.0/f	T2: 5 to 600 mn	T2: 5 to 600 mi
Alarm and tripping set points (Es1 and Es	52)	0 to 300 % of rated thermal capacity		
nitial thermal capacity used (Es0)		0 to 100 %		
Switching of thermal settings condition		by logic input		
		by Is set point adjustable from 0.25 to 8	BID	
Aaximum equipment temperature		60 to 200 °C (140 °F to 392 °F)		
Aeasurement origin	Main channels (I) or additional chann	els (l')		
ANSI 50BF - Breaker failure				
Presence of current	0.2 to 2 In			
Operating time	0.05 s to 3 s			
ANSI 50/27 - Inadvertent energiz	ation			
s set point	0.05 to 4 In			
/s set point	10 to 100 % Unp		T1:0 to 10 s	
			T2: 0 to 10 s	
ANSI 50/51 - Phase overcurrent				
	Tripping time delay	Timer hold		
Fripping curve	Definite time	DT		
	SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT		
	RI	DT		
		DT or IDMT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F)	DT or IDMT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI	DT or IDMT DT or IDMT		
	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized	DT or IDMT DT or IDMT DT		
s set point	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In	DT or IDMT DT or IDMT DT Definite time	Inst; 0.05 s to 300	
•	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 ln 0.05 to 2.4 ln	DT or IDMT DT or IDMT DT	0.1 s to 12.5 s at 1	10 ls
•	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In 0.05 to 2.4 In Definite time (DT; timer hold)	DT or IDMT DT or IDMT DT Definite time		10 ls
s set point īmer hold	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In 0.05 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time)	DT or IDMT DT or IDMT DT Definite time IDMT	0.1 s to 12.5 s at 1	10 ls
•	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In 0.05 to 2.4 In Definite time (DT; timer hold)	DT or IDMT DT or IDMT DT Definite time IDMT	0.1 s to 12.5 s at 7 Inst; 0.05 s to 300	10 ls
imer hold	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In 0.05 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time)	DT or IDMT DT or IDMT DT Definite time IDMT	0.1 s to 12.5 s at 7 Inst; 0.05 s to 300	10 ls
imer hold leasurement origin	IEC: SIT/A, LTI/B, VIT/B, EIT/C IEEE: MI (D), VI (E), EI (F) IA: I, VI, EI Customized 0.05 to 24 In 0.05 to 2.4 In Definite time (DT; timer hold) IDMT (IDMT; reset time) Main channels (I) or additional channel	DT or IDMT DT or IDMT DT Definite time IDMT	0.1 s to 12.5 s at 7 Inst; 0.05 s to 300	10 ls

(1) Tripping as of 1.2 ls.

Functions	Settings		Time delays
			Time delays
ANSI 50N/51N or 50G/51G - I			
	Tripping time delay	Timer hold	
Fripping curve		DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
	IAC: I, VI, EI	DT or IDMT	
	EPATR-B, EPATR-C	DT	
	Customized	DT	
	0.6 to 5 A	EPATR-B	0.5 to 1 s
	0.6 to 5 A	EPATR-C	0.1 to 3 s
0 set point	0.01 to 15 In0 (min. 0.1 A)	Definite time	Inst; 0.05 s to 300 s
	0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 ls0
imer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
	IDMT (IDMT; reset time)		0.5 s to 20 s
leasurement origin		ents IO Σ or sum of phase currents I'O Σ	
ANSI 50V/51V - Voltage-rest		ents to 2 of sum of phase currents to 2	-
ANSI 50 7 51 7 - Voltage-resti		Timer held	
	Tripping time delay	Timer hold	
ripping curve		DT	
	SIT, LTI, VIT, EIT, UIT (1)	DT	
	RI	DT	
	IEC : SIT/A, LTI/B, VIT/B, EIT/C	DT or IDMT	
	IEEE : MI (D), VI (E), EI (F)	DT or IDMT	
	IAC : I, VI, EI	DT or IDMT	
	Customized	DT	
s set point	0.5 to 24 In	Definite time	Inst; 0.05 s to 300 s
	0.5 to 2.4 In	IDMT	0.1 s to 12.5 s at 10 ls0
Timer hold	Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
			0.5 s to 20 s
	IDM I (IDM I: reset time)		0.3 5 10 20 5
Measurement origin	IDMT (IDMT; reset time) Main channels (I) or additional chan	nels (l')	0.3 \$ 10 20 \$
U U	Main channels (I) or additional chan	nels (l')	0.3310203
ANSI 51C - Capacitor bank u	Main channels (I) or additional chan Inbalance		
ANSI 51C - Capacitor bank u	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n	nels (l') Definite time	0.1 to 300 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) (Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N)		0.1 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) o et point and time delay	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp	Definite time	
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) o iet point and time delay leasurement origin	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan	Definite time	0.1 to 300 s
ANSI 51C - Capacitor bank us s set point ANSI 59 - Overvoltage (L-L) of Set point and time delay Measurement origin	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan	Definite time	0.1 to 300 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) d tet point and time delay deasurement origin ANSI 59N - Neutral voltage d	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan	Definite time	0.1 to 300 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) d tet point and time delay leasurement origin ANSI 59N - Neutral voltage d	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement	Definite time	0.1 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) d et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT	Definite time	0.1 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) d et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT 2 to 80 % of Unp	Definite time nnels (U')	0.1 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) of et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve et point	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT 2 to 80 % of Unp 2 to 10 % of Unp	Definite time nnels (U') Definite time IDMT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) (set point and time delay deasurement origin ANSI 59N - Neutral voltage d ripping curve set point deasurement origin	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan Iisplacement Definite time IDMT 2 to 80 % of Unp 2 to 10 % of Unp Main channels (U), additional chanr	Definite time nnels (U') Definite time IDMT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of eet point and time delay Measurement origin ANSI 59N - Neutral voltage d ripping curve eet point Measurement origin ANSI 64REF - Restricted ear	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT 2 to 80 % of Unp 2 to 10 % of Unp Main channels (U), additional chanr th fault differential	Definite time nnels (U') Definite time IDMT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) e et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve et point leasurement origin ANSI 64REF - Restricted ear	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT 2 to 80 % of Unp 2 to 10 % of Unp Main channels (U), additional channels th fault differential 0.05 to 0.8 In (In \ge 20 A)	Definite time nnels (U') Definite time IDMT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) o et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve et point leasurement origin ANSI 64REF - Restricted ear s0 set point	Main channels (I) or additional chanInbalance0.05 A to 2 I'nor (L-N)50 to 150 % of Unp or VnpMain channels (U) or additional chanIisplacementIbefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \ge 20 A)0.1 to 0.8 In (In < 20 A)	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin	Main channels (I) or additional chan Inbalance 0.05 A to 2 I'n or (L-N) 50 to 150 % of Unp or Vnp Main channels (U) or additional chan lisplacement Definite time IDMT 2 to 80 % of Unp 2 to 10 % of Unp Main channels (U), additional channels th fault differential 0.05 to 0.8 In (In \ge 20 A)	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In < 20 A)	Definite time nnels (U') Definite time IDMT nels (U') or neutral-point voltage Vnt nannels (I', I'0)	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) of et point and time delay leasurement origin ANSI 59N - Neutral voltage d ripping curve et point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts	Main channels (I) or additional chanInbalance0.05 A to 2 I'nor (L-N)50 to 150 % of Unp or VnpMain channels (U) or additional chanIisplacementIbefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln \ge 20 A)0.1 to 0.8 ln (ln < 20 A)	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt hannels (I', I'0) Period	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In < 20 A)	Definite time nnels (U') Definite time IDMT nels (U') or neutral-point voltage Vnt nannels (I', I'0)	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of the point and time delay deasurement origin ANSI 59N - Neutral voltage of ripping curve the point deasurement origin ANSI 64REF - Restricted ear so set point deasurement origin ANSI 66 - Starts per hour total number of starts lumber of consecutive starts	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln \geq 20 A)0.1 to 0.8 ln (ln $<$ 20 A)Main channels (I, I0) or additional chan	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt hannels (I', I'0) Period	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point Measurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is.	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In $<$ 20 A)Main channels (I, I0) or additional chan1 to 601 to 60	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt hannels (I', I'0) Period	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In $<$ 20 A)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt hannels (I', I'0) Period	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u set point ANSI 59 - Overvoltage (L-L) of et point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve et point leasurement origin ANSI 64REF - Restricted ear 0 set point leasurement origin ANSI 66 - Starts per hour bial number of starts umber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In $<$ 20 A)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30°, 45°, 60°	Definite time Definite time Definite time IDMT tels (U') or neutral-point voltage Vnt hannels (I', I'0) Period T time delay stop/start	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of et point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve et point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase tharacteristic angle	Main channels (I) or additional chanImbalance0.05 A to 2 I'nor (L-N)50 to 150 % of Unp or VnpMain channels (U) or additional chanIsplacementIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanTh fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In $<$ 20 A)Main channels (I, I0) or additional chanTh fault differential0.05 to 0.8 In (In $<$ 20 A)0.1 to 0.8 In (In $<$ 20 A)The fault of the	Definite time Definite time Definite time IDMT Definite time IDMT tels (U') or neutral-point voltage Vnt nannels (I', I'0) Period T time delay stop/start Timer hold delay	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u as set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point Measurement origin ANSI 64REF - Restricted ear so set point Measurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase characteristic angle	Main channels (I) or additional chanImbalance0.05 A to 2 I'nor (L-N)50 to 150 % of Unp or VnpMain channels (U) or additional chanIisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanTh fault differential0.05 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In \geq 20 A)0.1 to 0.8 In (In $<$ 20 A)Main channels (I, I0) or additional chanTh to 601 to 60overcurrent30°, 45°, 60°Tripping time delayDefinite time	Definite time Definite time Definite time DMT Definite time IDMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u a set point ANSI 59 - Overvoltage (L-L) of et point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve et point leasurement origin ANSI 64REF - Restricted ear so set point leasurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase tharacteristic angle	Main channels (I) or additional chanInbalance $0.05 A to 2 I'n$ or (L-N) $50 to 150 \% of Unp or Vnp$ Main channels (U) or additional chanIisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln $\ge 20 A$)0.1 to 0.8 ln (ln $< 20 A$)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30°, 45°, 60°Tripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT (1)	Definite time Definite time Definite time DMT Definite time IDMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u as set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point Measurement origin ANSI 64REF - Restricted ear so set point Measurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase characteristic angle	Main channels (I) or additional chanInbalance $0.05 A to 2 I'n$ or (L-N) $50 to 150 \% of Unp or Vnp$ Main channels (U) or additional chanIisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln $\ge 20 A$)0.1 to 0.8 ln (ln $< 20 A$)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30°, 45°, 60°Tripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT (1)RI	Definite time Definite time Definite time DMT Definite time DMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u as set point ANSI 59 - Overvoltage (L-L) of tet point and time delay leasurement origin ANSI 59N - Neutral voltage of ripping curve tet point Measurement origin ANSI 64REF - Restricted ear so set point Measurement origin ANSI 66 - Starts per hour otal number of starts lumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase characteristic angle	Main channels (I) or additional chanInbalance $0.05 A to 2 I'n$ or (L-N) $50 to 150 \% of Unp or Vnp$ Main channels (U) or additional chanIisplacementDefinite timeIDMT $2 to 80 \% of Unp$ $2 to 10 \% of Unp$ Main channels (U), additional chanmain channels (U), additional chan $10MT$ $2 to 10 \% of Unp$ Main channels (U), additional chanth fault differential $0.05 to 0.8 ln (ln \geq 20 A)0.1 to 0.8 ln (ln < 20 A)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30^\circ, 45^\circ, 60^\circTripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT(1)RIIEC: SIT/A, LTI/B, VIT/B, EIT/C$	Definite time Definite time Definite time DMT Definite time DMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Get point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Bet point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Jumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance $0.05 A to 2 I'n$ or (L-N) $50 to 150 \% of Unp or Vnp$ Main channels (U) or additional chanIisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln $\ge 20 A$)0.1 to 0.8 ln (ln $< 20 A$)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30°, 45°, 60°Tripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT (1)RI	Definite time Definite time Definite time DMT Definite time DMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Get point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Jumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance $0.05 A to 2 I'n$ or (L-N) $50 to 150 \% of Unp or Vnp$ Main channels (U) or additional chanIisplacementDefinite timeIDMT $2 to 80 \% of Unp$ $2 to 10 \% of Unp$ Main channels (U), additional chanmain channels (U), additional chan $10MT$ $2 to 10 \% of Unp$ Main channels (U), additional chanth fault differential $0.05 to 0.8 ln (ln \geq 20 A)0.1 to 0.8 ln (ln < 20 A)Main channels (I, I0) or additional chan1 to 601 to 60overcurrent30^\circ, 45^\circ, 60^\circTripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT(1)RIIEC: SIT/A, LTI/B, VIT/B, EIT/C$	Definite time Definite time Definite time DMT Definite time DMT tels (U') or neutral-point voltage Vnt pannels (I', I'0) Period T time delay stop/start Timer hold delay DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Get point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Jumber of consecutive starts 1) Tripping as of 1.2 Is. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance 0.05 A to 2 I'n or (L-N) $50 \text{ to 150 \% of Unp or Vnp}$ Main channels (U) or additional chanlisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanmain channels (U), additional chanth fault differential0.05 to 0.8 ln (ln $\ge 20 \text{ A}$)0.1 to 0.8 ln (ln $\le 20 \text{ A}$)0.1 to 0.8 ln (ln $< 20 \text{ A}$)Main channels (I, I0) or additional chan1 to 601 to 60Definite timeSIT, LTI, VIT, EIT, UIT ⁽¹⁾ RIIEC: SIT/A, LTI/B, VIT/B, EIT/CIEEE: MI (D), VI (E), EI (F)	Definite time Definite time Definite time DMT Definite time DMT DMT Dels (U') or neutral-point voltage Vnt mannels (I', I'0) Period T time delay stop/start Timer hold delay DT DT DT DT DT DT DT DT DT D	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Get point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Number of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance0.05 A to 2 I'nor (L-N)50 to 150 % of Unp or VnpMain channels (U) or additional chanlisplacementDefinite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanmain channels (U), additional chanth fault differential0.05 to 0.8 In (In ≥ 20 A)0.1 to 0.8 In (In ≤ 20 A)0.1 to 0.8 In (In < 20 A)Main channels (I, I0) or additional chan1 to 601 to 600 overcurrent30°, 45°, 60°Tripping time delayDefinite timeSIT, LTI, VIT, EIT, UIT ⁽¹⁾ RIIEC: SIT/A, LTI/B, VIT/B, EIT/CIEEE: MI (D), VI (E), EI (F)IAC: I, VI, EI	Definite time Definite time Definite time Doffinite time DMT Definite time DMT Definite time DMT DT DT DT DT DT DT DT DT D	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Get point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Number of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chan lisplacement Definite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanIbMT2 to 50 0.8 ln (In \ge 20 A)0.1 to 0.8 ln (In \le 20 A)0.1 to 0.8 ln (In $<$ 20 A)0.1 to 601 to 601 to 60Definite timeSIT, LTI, VIT, EIT, UIT (*)RIIEC: SIT/A, LTI/B, VIT/B, EIT/CIEEE: MI (D), VI (E), EI (F)IAC: I, VI, EICustomized0.1 to 24 In	Definite time Definite time Definite time DMT Definite time DMT Definite time DMT DMT DT DT DT DT DT DT DT	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h 0 to 90 mn
Measurement origin ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) o Set point and time delay Measurement origin ANSI 59N - Neutral voltage d Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of consecutive starts (1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle Tripping curve s set point Timer hold	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chan lisplacement Definite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanIbMT2 to 50 0.8 ln (In \ge 20 A)0.1 to 0.8 ln (In \ge 20 A)0.1 to 0.8 ln (In \le 20 A)0.1 to 601 to 601 to 60Definite timeSIT, LTI, VIT, EIT, UIT (*)RIIEC: SIT/A, LTI/B, VIT/B, EIT/CIEEE: MI (D), VI (E), EI (F)IAC: I, VI, EICustomized0.1 to 2.4 ln0.1 to 2.4 ln	Definite time Definite time Definite time Doffinite time DMT Definite time DMT Definite time DMT DT DT DT DT DT DT DT DT D	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h 0 to 90 mn Inst; 0.05 s to 300 s 0.1 s to 12.5 s at 10 ls0
ANSI 51C - Capacitor bank u s set point ANSI 59 - Overvoltage (L-L) of Set point and time delay Measurement origin ANSI 59N - Neutral voltage of Tripping curve Set point Measurement origin ANSI 64REF - Restricted ear s0 set point Measurement origin ANSI 66 - Starts per hour Total number of starts Number of consecutive starts 1) Tripping as of 1.2 ls. ANSI 67 - Directional phase Characteristic angle	Main channels (I) or additional chanInbalance 0.05 A to 2 I'nor (L-N) 50 to 150 % of Unp or VnpMain channels (U) or additional chan lisplacement Definite timeIDMT2 to 80 % of Unp2 to 10 % of UnpMain channels (U), additional chanIbMT2 to 50 0.8 ln (In \ge 20 A)0.1 to 0.8 ln (In \le 20 A)0.1 to 0.8 ln (In $<$ 20 A)0.1 to 601 to 601 to 60Definite timeSIT, LTI, VIT, EIT, UIT (*)RIIEC: SIT/A, LTI/B, VIT/B, EIT/CIEEE: MI (D), VI (E), EI (F)IAC: I, VI, EICustomized0.1 to 24 In	Definite time Definite time Definite time Doffinite time DMT Definite time DMT Definite time DMT DT DT DT DT DT DT DT DT D	0.1 to 300 s 0.05 to 300 s 0.05 to 300 s 0.1 to 100 s 1 to 6 h 0 to 90 mn Inst; 0.05 s to 300 s

(1) Tripping as of 1.2 ls.

Functions	S	Settings		Time
	7NC - Directional earth fault, proje			
Characteristic a		-45°, 0°, 15°, 30°, 45°, 60°, 90°		
Is0 set point		0.01 to 15 ln0 (mini. 0,1 A)	Definite time	Inst; 0.05 s to 300 s
Vs0 set point		2 to 80 % of Unp		
Memory time		T0mem time	0; 0.05 s to 300 s	
,		V0mem validity set point	0; 2 to 80 % of Unp	
Measurement o	prigin	10 input, l'0 input	· · · ·	
ANSI 67N/67	7NC - Directional earth fault, acco	ording to 10 vector magnitude (ty	/pe 2)	
Characteristic a	angle	-45°, 0°, 15°, 30°, 45°, 60°, 90°	, ,	
		Tripping time delay	Timer hold delay	
Tripping curve		Definite time	DT	
		SIT, LTI, VIT, EIT, UIT ⁽¹⁾	DT	
		RI	DT	
		IEC: SIT/A,LTI/B, VIT/B, EIT/C	DT or IDMT	
		IEEE: MI (D), VI (E), EI (F)	DT or IDMT	
		IAC: I, VI, EI	DT or IDMT	
		Customized	DT	
Is0 set point		0.1 to 15 In0 (min. 0.1 A)	Definite time	Inst; 0.05 s to 300 s
		0.01 to 1 In0 (min. 0.1 A)	IDMT	0.1 s to 12.5 s at 10 ls0
Vs0 set point		2 to 80 % of Unp		
Timer hold		Definite time (DT; timer hold)		Inst; 0.05 s to 300 s
		IDMT (IDMT; reset time)		0.5 s to 20 s
Measurement o	0	10 input, I'0 input or sum of phase curr		
	7NC type 3 - Directional earth faul	t, according to I0 vector magnit	tude directionalized on a	tripping sector
Tripping sector	0	0° to 359°		
Tripping sector		0° to 359°		
	CSH core balance CT (2 A rating)	0.1 A to 30 A	Definite time	Inst; 0.05 s to 300 s
	1ACT	0.005 to 15 In0 (min. 0.1 A)		
Core balance CT + ACE990	Core balance CT + ACE990 (range 1)		01.000/ (11	
		Calculated V0 (sum of 3 voltages)	2 to 80 % of Unp	
	A.A.	Measured V0 (external VT)	0.6 to 80 % of Unp	
Measurement o		10 input or 1'0 input		
ANSI 78PS -	•	0.4 to 200 c		
	ne equal-area criterion	0.1 to 300 s		
	ber of power swings	1 to 30		
Time between 2		1 to 300 s		
	Overfrequency			
Set point and tin		50 to 55 Hz or 60 to 65 Hz	1 (1 III)	0.1 to 300 s
Measurement o		Main channels (U) or additional chann	nels (U')	
	Jnderfrequency			
Set point and tin		40 to 50 Hz or 50 to 60 Hz		0.1 to 300 s
Measurement o	-	Main channels (U) or additional chann	nels (U')	
ANSI 81R - F	Rate of change of frequency			0.454,000
		0.1 to 10 Hz/s		0.15 to 300 s
	Machine différential			
lds set point		$\frac{0.05 \text{ to } 0.5 \ln (\ln \ge 20 \text{ A})}{0.1 \text{ to } 0.5 \ln (\ln \le 20 \text{ A})}$		
ANCIOT	From of a sum of a liffing set in l	0.1 to 0.5 ln (ln < 20 A)		
	Fransformer differential			
High set point		3 to 18 ln1		
Percentage-b	Jaseu Curve	30 to 100 % In1		
Ids set point		30 to 100 % ln1 15 to 50 %		
Slope Id/It Slope Id/It2		without, 50 to 100 %		
orope iu/itz	oint	1 to 18 ln1		
Slone change n				
	energization			
Restraint on e		1 to 10 %		
Restraint on e		1 to 10 %		
Restraint on e Current thresho Delay	old	1 to 10 % 0 to 300 s		
Restraint on e Current thresho Delay Restraint on C	old	0 to 300 s		
Restraint on e Current thresho Delay Restraint on C Activity	old CT loss	0 to 300 s On / Off	Self-adapting	
Restraint on e Current thresho Delay Restraint on C Activity Retenues sur	old CT loss r taux d'harmoniques	0 to 300 s On / Off Classic	Self-adapting	
Restraint on e Current thresho Delay Restraint on C Activity Retenues sur Choice of restra	old CT loss r taux d'harmoniques	0 to 300 s On / Off Classic Classic	Self-adapting	
Restraint on e Current thresho Delay Restraint on C Activity Retenues sur Choice of restra High set point	old CT loss r taux d'harmoniques aint	0 to 300 s On / Off Classic Classic On		
Current thresho Delay Restraint on C Activity Retenues sur Choice of restra High set point Harmonic 2 perce	old CT loss r taux d'harmoniques aint centage set point	0 to 300 s On / Off Classic Classic On off, 5 to 40 %	Self-adapting	
Restraint on e Current thresho Delay Restraint on O Activity Retenues sur Choice of restra High set point Harmonic 2 pero Harmonic 2 rest	old CT loss r taux d'harmoniques aint centage set point	0 to 300 s On / Off Classic Classic On	Self-adapting	

Control and monitoring Description

Sepam performs all the control and monitoring functions required for electrical network operation:

■ the main control and monitoring functions are predefined and fit the most frequent cases of use. They are ready to use and are implemented by simple parameter setting after the necessary logic inputs / outputs are assigned.

■ the predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: □ logic equation editor, to adapt and complete the predefined control and monitoring functions

□ creation of personalized messages for local annunciation

□ creation of personalized mimic diagrams corresponding to the controlled devices □ customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages

■ with the Logipam option, Sepam can provide the most varied control and monitoring functions, programmed using the SFT2885 programming software that implements the Logipam ladder language.

Operating principle

The processing of each control and monitoring function may be broken down into 3 phases:

- acquisition of input data:
- results of protection function processing

□ external logic data, connected to the logic inputs of an optional MES120 input / output module

- Iocal control orders transmitted by the mimic-based UMI
- □ remote control orders (TC) received via the Modbus communication link
- actual processing of the control and monitoring function
- utilization of the processing results:
- activation of outputs to control a device
- □ information sent to the facility manager:
- by message and/or LED on the Sepam display and SFT2841 software
- by remote indication (TS) via the Modbus communication link
- by real-time indications on device status on the animated mimic diagram.

Logic inputs and outputs

The number of Sepam inputs / outputs must be adapted to fit the control and monitoring functions used.

The 5 outputs included in the Sepam series 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 logic inputs and 6 output relays.

After the number of MES120 modules required for the needs of an application is set, the logic inputs are assigned to functions. The functions are chosen from a list which covers the whole range of possible uses. The functions are adapted to meet needs within the limits of the logic inputs available. The inputs may also be inverted for undervoltage type operation.

A default input / output assignment is proposed for the most frequent uses.

Maximum Sepam series 80 configuration with 3 MES120 modules: 42 inputs and 23 outputs.

Logic inputs and outputs GOOSE

GOOSE logic inputs are used with the IEC61850 communication protocol. The GOOSE inputs are divided between the 2 GSE virtual modules with 16 logic inputs.

Control and monitoring Description of predefined functions

Each Sepam contains the appropriate predefined control and monitoring functions for the chosen application.

ANSI 94/69 - Circuit breaker/contactor control

- Control of breaking devices equipped with different types of closing and tripping coils:
- circuit breakers with shunt or undervoltage trip coils
- Iatching contactors with shunt trip coils
- contactors with latched orders.
- The function processes all breaking device closing and tripping conditions, based on:
- protection functions
- breaking device status data
- remote control orders

■ specific control functions for each application (e.g. recloser, synchro-check). The function also inhibits breaking device closing, according to the operating conditions.

Automatic transfer (AT)

This function transfers busbar supply from one source to another. It concerns substations with two incomers, with or without coupling.

The function carries out:

■ automatic transfer with a break if there is a loss of voltage or a fault

manual transfer and return to normal operation without a break, with or without synchro-check

- control of the coupling circuit breaker (optional)
- selection of the normal operating mode

■ the necessary logic to ensure that at the end of the sequence, only 1 circuit breaker out of 2 or 2 out of 3 are closed.

The function is distributed between the two Sepam units protecting the two incomers. The synchro-check function (ANSI 25) is carried out by the optional MCS025 module, in conjunction with one of the two Sepam units.

Load shedding - Automatic restart

Automatic load regulation on electrical networks by load shedding followed by automatic restarting of motors connected to the network

Load shedding

The breaking device opens to stop motors in case of:

- detection of a network voltage sag by the positive sequence undervoltage
- protection function ANSI 27D
- receipt of a load shedding order on a logic input.

Automatic restart

The motors disconnected as a result of the network voltage sag are automatically restarted:

after the return of network voltage is detected by the positive sequence undervoltage protection function ANSI 27D

and a time delay has run out, so as to stagger motor restarts.

De-excitation

Interruption of a synchronous generator's excitation supply and tripping of the generator breaking device in case of:

- detection of an internal generator fault
- detection of an excitation system fault
- receipt of a de-excitation order on a logic input or via the communication link.

Automatic transfer with synchro-check controlled by Sepam series 80.

Control and monitoring Description of predefined functions

Genset shutdown

Shutdown of the driving machine, tripping of the breaking device and interruption of the generator excitation supply in case of:

detection of an internal generator fault

■ receipt of a genset shutdown order on a logic input or via the communication link.

Control of capacitor banks

This function controls 1 to 4 switches for capacitor steps, taking into account all the closing and tripping conditions determined by the ANSI 94/69 function for control of the switchgear.

Manual or automatic control, controlled by an external reactive-energy regulator.

ANSI 68 - Logic discrimination

This function provides:

■ perfect tripping discrimination with phase-to-phase and phase-to-earth shortcircuits, on all types of network

■ faster tripping of the breakers closest to the source (solving the drawback of conventional time discrimination).

Each Sepam is capable of:

■ sending a blocking input when a fault is detected by the phase overcurrent and earth fault protection functions, which may or may not be directional (ANSI 50/51, 50N/51N, 67 or 67N/67NC)

■ and receiving blocking inputs which inhibit protection tripping. A saving mechanism ensures continued operation of the protection in the event of a blocking link failure.

ANSI 86 - Latching / acknowledgement

The tripping outputs for all the protection functions and all the logic inputs Ix can be latched individually. The latched information is saved in the event of an auxiliary power failure.

(The logic outputs cannot be latched.)

All the latched data may be acknowledged:

- locally, with the key 💮
- remotely via a logic input
- or via the communication link.

The Latching/acknowledgement function, when combined with the circuit breaker/ contactor control function, can be used to create the ANSI 86 "Lockout relay" function.

Output relay testing

Each output relay is activated for 5 seconds, to make it simpler to check output connections and connected switchgear operation.

Control and monitoring Description of predefined functions

Local indications on the Sepam front panel.

mental.						
orm mana	age history					
	10 1.0	lade lad	- 1.44 C	1.4	in the	
0	0 0	0 0	0	0 0	0 0	
Fed	0 0	13 14		14 17		
24	(New)	100	dana .	Triat	Colorador 1	
0.44.46	1410.0.00			10.000		
10.76.76	140000			10040142		_
10.10.10	1400000	041	41414	Contrast of		-
10000	And in case			- 2010		
10.04.04	hellin be			TOTAL OF		
Contactor -	instantin bein			10000		
in the fact	NAMES OF			100.000		
10.54.54	Automatical Program		_	10000		
10.04.04	Agency and		_	1002019		
and a feature	Indiana.					-

SFT2841: alarm history.

ANSI 30 - Local annunciation

LED indication

■ 2 LEDs, on the front and back of Sepam, indicate the unit operating status, and are visible when a Sepam without a UMI is mounted inside the LV compartment, with access to connectors:

□ green LED ON: Sepam on

□ red "key" LED: Sepam unavailable (initialization phase or detection of an internal failure)

- 9 yellow LEDs on the Sepam front panel:
- □ pre-assigned and identified by standard removable labels

□ the SFT2841 software tool may be used to assign LEDs and personalize labels.

Local annunciation on Sepam display

Events and alarms may be indicated locally on Sepam's advanced UMI or on the mimic-based UMI by:

- messages on the display unit, available in 2 languages:
- English, factory-set messages, not modifiable

□ local language, according to the version delivered (the language version is chosen when Sepam is set up)

■ the lighting up of one of the 9 yellow LEDs, according to the LED assignment, which is set using SFT2841.

Alarm processing

■ when an alarm appears, the related message replaces the current display and the related LED goes on.

The number and type of messages depend on the type of Sepam. The messages are linked to Sepam functions and may be viewed on the front-panel display and in the SFT2841 "Alarms" screen.

- to clear the message from the display, press the key
- after the fault has disappeared, press the key: the light goes off and Sepam is reset

E88106

Functions Sepam series 80

Control and monitoring Description of predefined functions

Local control using the mimic-based UMI.

Local control using the mimic-based UMI

Sepam control mode

A key-switch on the mimic-based UMI is used to select the Sepam control mode. Three modes are available : Remote, Local or Test.

- In Remote mode:
- remote control orders are taken into account
- local control orders are disabled, with the exception of the circuit-breaker open order.
- In Local mode:

■ remote control orders are disabled, with the exception of the circuit-breaker open order

■ local control orders are enabled.

- Test mode should be selected for tests on equipment, e.g. during preventivemaintenance operations:
- all functions enabled in Local mode are available in Test mode
- no remote indications (TS) are sent via the communication link.

The Logipam programming software can be used to customize control-mode processing.

View device status on the animated mimic diagram

For safe local control of devices, all information required by operators can be displayed simultaneously on the mimic-based UMI:

■ single-line diagram of the equipment controlled by Sepam, with an animated, graphic indication of device status in real time

the desired current, voltage and power measurements.

The local-control mimic diagram can be customized by adapting one of the supplied, predefined diagrams or by creating a diagram from scratch.

Local control of devices

All the devices for which opening and closing are controlled by Sepam can be controlled locally using the mimic-based UMI.

The most common interlock conditions can be defined be logic equations or by Logipam.

The sure and simple operating procedure is the following:

select the device to be controlled by moving the selection window using the keys
 or Sepam checks whether local control of the selected device is authorized

and informs the operator (selection window with a solid line)

 selection confirmation for the device to be controlled by pressing the key election window flashes)

device control by pressing:

🗆 key 🔍 : open order

 \Box or key \bigcirc : close order.

Control and monitoring Adaptation of predefined functions using the SFT2841 software

The predefined control and monitoring functions can be adapted for particular needs using the SFT2841 software, which offers the following customization options: ■ logic equation editor, to adapt and complete the predefined control and monitoring functions

- creation of personalized messages for local annunciation
- creation of custom mimic diagrams corresponding to the controlled devices

■ customization of the control matrix by changing the assignment of output relays, LEDs and annunciation messages.

Operating principle

SFT2841: logic equation editor.

Logic equation editor

The logic equation editor included in the SFT2841 software can be used to: complete protection function processing:

- □ additional interlocking
- conditional inhibition/validation of functions
- □ etc.

■ adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs

■ local control orders transmitted by the mimic-based UMI

remote control orders

using the Boolean operators AND, OR, XOR, NOT, and automation functions such as time delays, bistables and time programmer.

Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit breaking device closing
- used to inhibit or reset a protection function.

Control and monitoring Adaptation of predefined functions using the SFT2841 software

Personalized alarm and operating messages

The alarm and operating messages may be personalized using the SFT2841 software tool.

The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

on the Sepam display

■ in the SFT2841 "Alarms" and "Alarm History" screens.

Local-control mimic diagram

The mimic-diagram editor in the SFT2841 software can be used to create a singleline diagram corresponding exactly to the equipment controlled by Sepam. Two procedures are available:

■ rework a diagram taken from the library of standard diagrams in the SFT2841 software

■ creation of an original diagram : graphic creation of the single-line diagram, positioning of symbols for the animated devices, insertion of measurements, text, etc.

Creation of a customized mimic diagram is made easy:

- library of predefined symbols: circuit breakers, earthing switch, etc.
- creation of personalized symbols.

SFT2841: mimic-diagram editor.

PE88109

PE88110

12.84

Ø

SFT2841: control matrix.

Control matrix

- The control matrix is a simple way to assign data from:
- protection functions
- control and monitoring functions
- logic inputs
- logic equations or Logipam program
- to the following output data:
- output relays
- 9 LEDs on the front panel of Sepam
- messages for local annunciation
- triggering of disturbance recording.

Control and monitoring Customized functions using Logipam

The SFT2885 programming software (Logipam) can be used to enhance Sepam by programming specific control and monitoring functions.

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by Logipam.

SFT2885: Logipam programming software.

Logipam programming software

The Logipam SFT2885 programming software can be used to:

adapt predefined control and monitoring functions

■ program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application.

It is made up of:

■ a ladder-language program editor used to address all Sepam data and to program complex control functions

■ a simulator for complete program debugging

a code generator to run the program on Sepam. The ladder-language program and the data used can be documented and a complete file can be printed.

Offering more possibilities than the logic-equation editor, Logipam can be used to create the following functions :

- specific automatic transfer functions
- motor starting sequences.

It is not possible to combine the functions programmed by Logipam with functions adapted by the logic-equation editor in a given Sepam.

The Logipam program uses the input data from:

- protection functions
- Iogic inputs
- remote control orders
- local control orders transmitted by the mimic-based UMI.

The result of Logipam processing may then be:

- assigned to a logic output, directly or via the control matrix
- assigned to a LED or message via the control matrix
- transmitted by the communication link, as a new remote indication
- used by the predefined control and monitoring functions
- used to inhibit or reset a protection function.

Base unit Presentation

Base units are defined according to the following characteristics:

- type of User-Machine Interface (UMI)
- working language
- type of base unit connector
- type of current sensor connector
- type of voltage sensor connector.

Sepam series 80 base unit with integrated advanced UMI.

Sepam series 80 base unit with mimic-based UMI.

Customized Chinese advanced UMI.

User-Machine Interface

Two types of User-Machine Interfaces (UMI) are available for Sepam series 80 base units:

- mimic-based UMI
- advanced UMI.

The advanced UMI can be integrated in the base unit or installed remotely on the cubicle. Integrated and remote advanced UMIs offer the same functions.

A Sepam series 80 with a remote advanced UMI is made up of:

- a bare base unit without any UMI, for mounting inside the LV compartment
- a remote advanced UMI (DSM303)

□ for flush mounting on the front panel of the cubicle in the location most suitable for the facility manager

□ for connection to the Sepam base unit using a prefabricated CCA77x cord. The characteristics of the remote advanced UMI module (DSM303) are presented on page 166.

Comprehensive data for facility managers

All the data required for local equipment operation may be displayed on demand: display of all measurement and diagnosis data in numerical format with units and/or in bar graphs

- display of operating and alarm messages, with alarm acknowledgment and Sepam resetting
- display of the list of activated protection functions and the main settings of major protection functions
- adaptation of activated protection function set points or time delays in response to new operating constraints
- display of Sepam and remote module versions
- output testing and logic input status display
- display of Logipam data: status of variables, timers
- entry of 2 passwords to protect parameter and protection settings.

Local control of devices using the mimic-based UMI

The mimic-based UMI provides the same functions as the advanced UMI as well as local control of devices:

- selection of the Sepam control mode
- view device status on the animated mimic diagram
- local opening and closing of all the devices controlled by Sepam.

Ergonomic data presentation

- keypad keys identified by pictograms for intuitive navigation
- menu-guided access to data
- graphical LCD screen to display any character or symbol

■ excellent display quality under all lighting conditions : automatic contrast setting and backlit screen (user activated).

Working language

All the texts and messages displayed on the advanced UMI or on the mimic-based UMI are available in 2 languages:

- English, the default working language
- and a second language, which may be
- French
- □ Spanish
- another "local" language.

Please contact us regarding local language customization.

Connection of Sepam to the parameter setting tool

The SFT2841 parameter setting tool is required for Sepam protection and parameter setting.

A PC containing the SFT2841 software is connected to the RS 232 communication port on the front of the unit.

Base unit

Presentation

Selecti	on guide	
With remote advanced UMI	With integrated advanced UMI	With mimic-based UMI
•	•	•
•		•
•	•	•
		•
		•
		•
128 x 64 pixels	128 x 64 pixels	128 x 240 pixels
	•	•
		•
9	9	14
		Remote / Local / Test
 base unit: 2 LEDs visible on back remote advanced UMI: 2 LEDs visible on front 	2 LEDs, visible from front and back	2 LEDs, visible from front and back
9 LEDs on remote advanced UMI	9 LEDs on front	9 LEDs on front
 bare base unit, mounted at the back of the compartment using the AMT880 mounting plate DSM303 remote advanced UMI module , flush mounted on the front of the cubicle and connected to the base unit with the CCA72 prefabricated cord 	Flush mounted on front of cubicle	Flush mounted on front of cubicle
	With remote advanced UMI Performance Image: Second	advanced UMI advanced UMI W Image: Second Secon

Base unit Presentation

Sepam series 80 memory cartridge and backup battery.

Hardware characteristics

Removable memory cartridge

- The cartridge contains all the Sepam characteristics:
- all Sepam protection and parameter settings
- all the metering and protection functions required for the application
- predefined control functions
- functions customized by control matrix or logic equations
- functions programmed by Logipam (optional)
- personalized local-control mimic diagram
- accumulated energies and switchgear diagnosis values
- working languages, customized and otherwise.
- It may be made tamper-proof by lead sealing.

It is removable and easy to access on the front panel of Sepam to reduce maintenance time.

- If a base unit fails, simply:
- switch off Sepam and unplug connectors
- retrieve original cartridge
- replace the faulty base unit by a spare base unit (without cartridge)
- load the original cartridge into the new base unit
- plug in the connectors and switch Sepam on again:

Sepam is operational, with all its standard and customized functions, without requiring any reloading of protection and parameter settings.

Backup battery

Standard lithium battery, 1/2 AA format, 3.6 Volts.

It allows the following data to be stored in the event of an auxiliary power outage: time-tagged event tables

- disturbance recording data
- peak demands, tripping context, etc
- date and time.

The battery presence and charge are monitored by Sepam.

The main data (e.g. protection and parameter settings) are saved in the event of an auxiliary power outage, regardless of the state of the battery.

Auxiliary power supply

DC power supply voltage from 24 to 250 V DC.

Five relay outputs

The 5 relay outputs O1 to O5 on the base unit must be connected to connector (A). Each output can be assigned to a predetermined function using the SFT2841 software.

O1 to O4 are 4 control outputs with one NO contact, used by default for the switchgear control function:

- O1: switchgear tripping
- O2: switchgear closing inhibition
- O3: switchgear closing
- O4: available.

O5 is an indication output used by default for the watchdog function and has two contacts, one NC and one NO.

Base unit Presentation

Main connector and voltage and residual current input connector

A choice of 2 types of removable, screw-lockable 20-pin connectors:

- CCA620 screw-type connectors
- or CCA622 ring lug connectors.

The presence of the connector is monitored.

Connector for additional voltage inputs (Sepam B83)

CCT640 connector, removable and screw-lockable. The presence of the CCT640 connector is monitored.

•

Phase current input connectors

Current sensors connected to removable, screw-lockable connectors according to type of sensors used:

CCA630 or CCA634 connector for 1 A or 5 A current transformers

or CCA671 connector for LPCT sensors.

The presence of these connectors is monitored.

Mounting accessories

Spring clips

8 spring clips are supplied with the base unit to flush-mount Sepam in mounting plates 1.5 to 6 mm thick. Simple, tool-free installation.

AMT880 mounting plate

It is used to mount a Sepam without UMI inside the compartment with access to connectors on the rear panel.

Mounting used with remote advanced UMI module (DSM303).

AMT820 blanking plate

It fills in the space left when a standard model Sepam 2000 is replaced by a Sepam series 80.

Spare base units

The following spares are available to replace faulty base units:

- base units with or without UMI, without cartridge or connectors
- all types of standard cartridges, with or without the Logipam option.

AMT852 lead sealing accessory

The AMT852 lead sealing accessory can be used to prevent unauthorized modification of the settings of Sepam series 80 units with integrated advanced UMIs. The accessory includes:

■ a lead-sealable cover plate

■ the screws required to secure the cover plate to the integrated advanced UMI of the Sepam unit.

Note: the AMT852 lead sealing accessory can secured only to the integrated advanced UMIs of Sepam series 80 units Contact us to determine the serial number of the device on wich you can fit the lead sealing accessory.

Base unit Description

- 1 Green LED: Sepam on.
- 2 Red LED: Sepam unavailable.
- 3 9 yellow indication LEDs.
- 4 Label identifying the indication LEDs.
- 5 Graphical LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- **10** Acknowledgement and clearing of alarms (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Display and adaptation of activated protection
- settings. 13 Display of Sepam and Logipam data.
- **14** Entry of 2 passwords.
- 14 Entry of 2 passwords.
- 15 RS 232 PC connection port.
- 16 Backup battery.
- 17 Memory cartridge.
- 18 Door.

Front panel with advanced UMI

Front panel with mimic-based UMI

DE88157 1 2 3 es, 4 Sepam S82 Loca 5 6 ΄G 0 \oslash 7 8 l1 = **175 A** U21= **6.61 kW** P = **1.81 MW** Q = **860 kvar** 9 Ø 10 \oslash 11 K 12 21 19 17 15 20 18 16 14 13 25 24 23 22

- 1 Graphical LCD screen.
- 2 Green LED: Sepam on.
- 3 Red LED: Sepam unavailable.
- 4 Local close order.
- 5 Local open order.
- 6 Label identifying the indication LEDs.
- 7 9 yellow indication LEDs.
- 8 Move cursor up.
- 9 Confirm data entry.
- 10 Move cursor down.
- 11 RS 232 PC connection port.
- **12** Transparent door.
- **13** Entry of 2 passwords.
- 14 Mimic-based UMI display.
- 15 Sepam reset.
- **16** Display of alarm messages.
- 17 Acknowledgement and clearing of alarms.
- 18 Display of switchgear and network diagnosis data (or LED test).
- **19** Display and adaptation of activated protection settings.
- 20 Display of measurements.
- 21 Display of Sepam and Logipam data.
- 22 Three-position key switch to select Sepam control mode.
- 23 Backup battery.
- 24 Memory cartridge.
- 25 Door.

Base unit Description

 (H_3) Connector for 3rd MES120 input/output module.

+ Functional earth.

CAUTION

HAZARD OF DEFECTIVE COMMUNICATION

- **\blacksquare** Never use both communication ports (C2) and (F) on
- a Sepam series 80 at the same time. ■ The only communication ports that can be used simultaneously on a Sepam series 80 unit are ports(C1)and(C2)or ports(C1)and(F).

Failure to follow this instruction can cause equipement damage.

3

Base unit Technical characteristics

Weight		Been weit with	dueneed UNU	Pec s unit util	
		Base unit with a	idvanced UNII		h mimic-based UMI
Minimum weight (base unit with Maximum weight (base unit wit	/	2.4 kg (5.29 lb) 4.0 kg (8.82 lb)		3.0 kg (6.61 lb) 4.6 kg (10.1 lb)	
	113 MES 120)	4.0 Kg (0.02 lb)		4.0 kg (10.1 lb)	
Sensor inputs					
Phase current inputs		1 A or 5 A CT			
Input impedance		< 0.02 Ω			
Consumption		< 0.02 VA (1 A CT) < 0.5 VA (5 A CT)			
Continuous thermal withstand		4 In			
1 second overload		100 In			
Voltage inputs		Phase		Residual	
Input impedance		> 100 k Ω		> 100 k Ω	
Consommation		< 0.015 VA (100 V V	/T)	< 0.015 VA (100	V VT)
Continuous thermal withstand		240 V		240 V	
1-second overload		480 V		480 V	
Isolation of inputs in relation to other isolated groups		Enhanced		Enhanced	
Relay outputs					
Control relay outputs Of	1 to O4 and 0 x 0.1 (1)				
Voltage	DC	24/48 V DC	127 V DC	220 V DC	
5	AC (47.5 to 63 Hz)				100 to 240 V AC
Continuous current	, , , , , , , , , , , , , , , , , , ,	8A	8A	8A	8 A
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A	
C . <i>J</i>	Load L/R < 20 ms	6A/2A	0.5 A	0.2 A	
	Load L/R < 40 ms	4A/1A	0.2 A	0.1 A	
	Resistive load				8 A
	Load p.f. > 0.3				5 A
Making capacity		< 15 A for 200 ms			
Isolation of outputs in relation to other isolated groups	0	Enhanced			
Annunciation relay outp	out O5				
Voltage	DC	24/48 V DC	127 V DC	220 V DC	
÷	AC (47.5 to 63 Hz)				100 to 240 V AC
Continuous current	, , , , , , , , , , , , , , , , ,	2A	2A	2A	2A
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5 A	0.15 A	
	Load p.f. > 0.3				1 A
Isolation of outputs in relation to other isolated groups	0	Enhanced			
Power supply					
Voltage		24 to 250 V DC	-20 %	/ +10 %	
Maximum consumption		< 16 W			
Inrush current		< 10 A 10 ms			
Acceptable ripple content		12 %			
Acceptable momentary outage	s	100 ms			
Battery					
Format		1/2 AA lithium 3.6 V	/		
Service life		10 years Sepam er			
			ypically 6 years Sepa	am not energized	

3 years minimum, typically 6 years Sepam not energized (1) Relay outputs comptying with clause 6.7 of standard C 97.90 (30 A, 200 ms, 2000 operations)

Base unit Environmental characteristics

Electromagnetic compatibility	Standard	Level / Class	Value
Emission tests			
isturbing field emission	IEC 60255-25		
	EN 55022	A	
onducted disturbance emission	IEC 60255-25		
	EN 55022	А	
mmunity tests – Radiated disturbances			
nmunity to radiated fields	IEC 60255-22-3		10 V/m; 80 MHz - 1 GHz
	IEC 61000-4-3	111	10 V/m; 80 MHz - 2 GHz
	ANSI C37.90.2		35 V/m; 25 MHz - 1 GHz
lectrostatic discharge	IEC 60255-22-2		8 kV air; 6 kV contact
	ANSI C37.90.3		8 kV air; 4 kV contact
nmunity to magnetic fields at network frequency	IEC 61000-4-8	4	30 A/m (continuous) - 300 A/m (1-3 s
mmunity tests – Conducted disturbances		•	
nmunity to conducted RF disturbances	IEC 60255-22-6	III	10 V
ectrical fast transients/burst	IEC 60255-22-4	A and B	4 kV; 2.5 kHz / 2 kV; 5 kHz
	IEC 61000-4-4	IV	4 kV; 2.5 kHz
	ANSI C37.90.1	1 V	4 kV; 2.5 kHz
MHz damped oscillating wave	IEC 60255-22-1		2.5 kV CM; 1 kV DM
	ANSI C37.90.1		2.5 kV CM; 2.5 kV DM
0 kHz damped sine wave	IEC 61000-4-12	III	2 kV CM
ow damped oscillating wave (100 kHz to 1 MHz)	IEC 61000-4-18	III	2 kV CM
ast damped oscillating wave (3 MHz, 10 MHz, 30 MHz)	IEC 61000-4-18	III	
pulse wave	IEC 61000-4-5	III	2 kV CM; 1 kV DM
munity to conducted disturbances in common mode from 0 Hz	IEC 61000-4-16		
150 kHz			
oltage interruptions	IEC 60255-11		100 % during 100 ms
Mechanical robustness	Standard	Level / Class	Value
n operation	otaniaala		Valuo
•	150 00055 04 4	2	
brations	IEC 60255-21-1	2	1 Gn; 10 Hz - 150 Hz
	IEC 60068-2-6	Fc	2 Hz - 13.2 Hz; a = ±1 mm
	IEC 60068-2-64	2M1	
nocks	IEC 60255-21-2	2	10 Gn / 11 ms
arthquakes	IEC 60255-21-3	2	2 Gn (horizontal axes)
			1 Gn (vertical axes)
De-energized			
ibrations	IEC 60255-21-1	2	2 Gn; 10 Hz - 150 Hz
hocks	IEC 60255-21-2	2	27 Gn / 11 ms
olts	IEC 60255-21-2	2	20 Gn / 16 ms
Climatic withstand	Standard	Level / Class	Value
In operation			
-	IEC 60068-2-1	Ad	-25 °C
kposure to cold			
kposure to dry heat	IEC 60068-2-2	Bd	+70 °C
ontinuous exposure to damp heat	IEC 60068-2-78	Cab	10 days; 93 % RH ; 40 °C
alt mist	IEC 60068-2-52	Kb/2	6 days
fluence of corrosion/Gas test 2	IEC 60068-2-60		21 days; 75 % RH; 25 °C;
			$0.5 \text{ ppm H}_2\text{S}; 1 \text{ ppm SO}_2$
fluence of corrosion/Gas test 4	IEC 60068-2-60		0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C;
fluence of corrosion/Gas test 4	IEC 60068-2-60		0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ;
fluence of corrosion/Gas test 4	IEC 60068-2-60		0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C;
	IEC 60068-2-60		0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ;
n storage ⁽³⁾		Nb	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂
n storage ⁽³⁾ emperature variation with specified variation rate	IEC 60068-2-14	Nb	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold	IEC 60068-2-14 IEC 60068-2-1	Ab	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C
In storage ⁽³⁾ emperature variation with specified variation rate posure to cold xposure to dry heat	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2	Ab Bb	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C
In storage ⁽³⁾ emperature variation with specified variation rate xposure to cold xposure to dry heat	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78	Ab Bb Cab	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C
fluence of corrosion/Gas test 4 In storage ⁽³⁾ emperature variation with specified variation rate xposure to cold xposure to dry heat ontinuous exposure to damp heat	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30	Ab Bb Cab Db	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C
In storage ⁽³⁾ emperature variation with specified variation rate xposure to cold xposure to dry heat ontinuous exposure to damp heat	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78	Ab Bb Cab	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C
In storage ⁽³⁾ emperature variation with specified variation rate posure to cold xposure to dry heat	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30	Ab Bb Cab Db	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat ontinuous exposure to damp heat Safety Enclosure safety tests	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value
n storage ⁽³⁾ emperature variation with specified variation rate coposure to cold coposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C
n storage ⁽³⁾ mperature variation with specified variation rate aposure to cold aposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ont panel tightness	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20
n storage ⁽³⁾ mperature variation with specified variation rate posure to cold posure to dry heat ontinuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value
n storage ⁽³⁾ mperature variation with specified variation rate posure to cold posure to dry heat ontinuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire 5 kV ⁽¹⁾
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60695-5 IEC 60255-5	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire 5 kV ⁽¹⁾ 2 kV 1mn ⁽²⁾
n storage ⁽³⁾ mperature variation with specified variation rate sposure to cold sposure to dry heat ontinuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5	Ab Bb Cab Db Level / Class	$\begin{array}{c} 0.5 \ ppm \ H_2S; \ 1 \ ppm \ SO_2 \\ 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ ppm \ H_2S; \ 0.2 \ ppm \ SO_2; \\ 0.2 \ ppm \ NO_2; \ 0.01 \ ppm \ Cl_2 \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C \ cdays; \ 93 \ \% \ RH; \ 40 \ ^{\circ}C \ cdays; \ 95 \ ^{\circ}RH; \ 55 \ ^{\circ}C \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
n storage ⁽³⁾ mperature variation with specified variation rate posure to cold posure to dry heat nntinuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60695-5 IEC 60255-5	Ab Bb Cab Db Level / Class	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire 5 kV ⁽¹⁾ 2 kV 1mn ⁽²⁾
n storage ⁽³⁾ mperature variation with specified variation rate sposure to cold sposure to dry heat ontinuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60695-5 IEC 60255-5	Ab Bb Cab Db Level / Class	$\begin{array}{c} 0.5 \ ppm \ H_2S; \ 1 \ ppm \ SO_2 \\ 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ ppm \ H_2S; \ 0.2 \ ppm \ SO_2; \\ 0.2 \ ppm \ NO_2; \ 0.01 \ ppm \ Cl_2 \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C \ c \ 56 \ days; \ 93 \ ^{\circ}RH; \ 40 \ ^{\circ}C \ 6 \ days; \ 95 \ ^{\circ}RH; \ 55 \ ^{\circ}C \ \hline \\ \hline Value \ \hline \\ \hline \\ Other \ panels \ IP20 \ \hline \\ \hline \\ 650 \ ^{\circ}C \ with \ glow \ wire \ \hline \\ 5 \ kV^{(1)} \ 2 \ kV \ 1mn^{(2)} \ 1 \ kV \ 1 \ mn \ (indication \ output) \end{array}$
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 ANSI C37.90	Ab Bb Cab Db Level / Class IP52 Type 12	$\begin{array}{c} 0.5 \ ppm \ H_2S; \ 1 \ ppm \ SO_2 \\ 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ ppm \ H_2S; \ 0.2 \ ppm \ SO_2; \\ 0.2 \ ppm \ NO_2; \ 0.01 \ ppm \ Cl_2 \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline \\ -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C \ c \ 56 \ days; \ 93 \ ^{\circ}RH; \ 40 \ ^{\circ}C \ 6 \ days; \ 95 \ ^{\circ}RH; \ 55 \ ^{\circ}C \ \hline \\ \hline Value \ \hline \\ \hline \\ Other \ panels \ IP20 \ \hline \\ \hline \\ 650 \ ^{\circ}C \ with \ glow \ wire \ \hline \\ 5 \ kV^{(1)} \ 2 \ kV \ 1mn^{(2)} \ 1 \ kV \ 1 \ mn \ (indication \ output) \end{array}$
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests rewithstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60695-5 IEC 60255-5	Ab Bb Cab Db Level / Class IP52 Type 12 European directives:	$\begin{array}{c} 0.5 \ pmH_2S; 1 \ pmSO_2 \\ \hline 21 \ days; 75 \% \ HR; 25 °C; \\ 0.01 \ pmH_2S; 0.2 \ pmSO_2; \\ 0.2 \ pmNO_2; 0.01 \ pmCI_2 \\ \hline \\ -25 °C \ t+70 °C; 5 °C/min \\ -25 °C \\ \hline \\ +70 °C \\ \hline \\ 56 \ days; 93 \% \ RH; 40 °C \\ \hline \\ 6 \ days; 95 \% \ RH; 55 °C \\ \hline \\ Other \ panels \ IP20 \\ \hline \\ \hline \\ \hline \\ 650 °C \ with \ glow \ wire \\ \hline \\ \hline \\ 5 \ kV^{(1)} \\ 2 \ kV \ 1mn^{(2)} \\ 1 \ kV \ 1 \ mn \ (indication \ output) \\ 1.5 \ kV \ 1 \ mn \ (control \ output) \\ \hline \end{array}$
In storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat ontinuous exposure to damp heat Safety	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 IEC 60255-5 ANSI C37.90 EN 50263 harmonized	Ab Bb Cab Db Level / Class IP52 Type 12 European directives:	$\begin{array}{c} 0.5 \ ppm \ H_2S; \ 1 \ ppm \ SO_2 \\ \hline 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ ppm \ H_S; \ 0.2 \ ppm \ SO_2; \\ 0.2 \ ppm \ NO_2; \ 0.01 \ ppm \ Cl_2 \\ \hline \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \\ \hline +70 \ ^{\circ}C \\ \hline 56 \ days; \ 93 \ \% \ RH; \ 40 \ ^{\circ}C \\ \hline 6 \ days; \ 93 \ \% \ RH; \ 55 \ ^{\circ}C \\ \hline \hline Value \\ \hline \hline Other \ panels \ IP20 \\ \hline \hline 650 \ ^{\circ}C \ with \ glow \ wire \\ \hline 5 \ kV^{(1)} \\ \hline 2 \ kV \ 1mn \ (indication \ output) \\ \hline 1.5 \ kV \ 1 \ mn \ (control \ output) \\ \hline \ 1.5 \ kV \ 1 \ mn \ (control \ output) \\ \hline \ magnetic \ Compatibility \ (EMC) \ Directive \\ \hline \end{array}$
In storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ront panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 IEC 60255-5 ANSI C37.90 EN 50263 harmonized	Ab Bb Cab Db Level / Class IP52 Type 12 European directives: 89/336/EEC Electron	$\begin{array}{c} 0.5 \ pm \ H_2S; \ 1 \ pm \ SO_2 \\ \hline 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ pm \ H_2S; \ 0.2 \ pm \ SO_2; \\ 0.2 \ pm \ NO_2; \ 0.01 \ pm \ Cl_2 \\ \hline \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ \hline -25 \ ^{\circ}C \ at \ +70 \ ^{\circ}C \ 56 \ days; \ 93 \ ^{\circ}RH; \ 40 \ ^{\circ}C \ 6 \ days; \ 93 \ ^{\circ}RH; \ 40 \ ^{\circ}C \\ \hline 6 \ days; \ 95 \ ^{\circ}RH; \ 55 \ ^{\circ}C \ \hline \ Value \ \hline \ Value \ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests rewithstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 IEC 60255-5 ANSI C37.90 EN 50263 harmonized	Ab Bb Cab Db Level / Class IP52 Type 12 European directives: 89/336/EEC Electron 92/31/EEC Amendme	$\begin{array}{c} 0.5 \ pm \ H_2S; \ 1 \ pm \ SO_2 \\ 21 \ days; \ 75 \ \% \ HR; \ 25 \ ^{\circ}C; \\ 0.01 \ pm \ H_2S; \ 0.2 \ pm \ SO_2; \\ 0.2 \ pm \ NO_2; \ 0.01 \ pm \ Cl_2 \\ \hline \\ -25 \ ^{\circ}C \ t \ +70 \ ^{\circ}C; \ 5 \ ^{\circ}C/min \\ -25 \ ^{\circ}C \ t \ +70 \ ^{\circ}C \\ \hline \\ 56 \ days; \ 93 \ \% \ RH; \ 40 \ ^{\circ}C \\ \hline \\ 6 \ days; \ 95 \ \% \ RH; \ 55 \ ^{\circ}C \ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline$
n storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ont panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 IEC 60255-5 ANSI C37.90 EN 50263 harmonized	Ab Bb Cab Db Level / Class IP52 Type 12 European directives: 89/336/EEC Electron 92/31/EEC Amendmee 93/68/EEC Amendmee	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire 5 kV ⁽¹⁾ 2 kV 1mn (indication output) 1.5 kV 1 mn (control output) 1.5 kV 1 mn (control output) aggnetic Compatibility (EMC) Directive nt nt je Directive
In storage ⁽³⁾ emperature variation with specified variation rate exposure to cold exposure to dry heat continuous exposure to damp heat Safety Enclosure safety tests ront panel tightness re withstand Electrical safety tests 2/50 µs impulse wave ower frequency dielectric withstand Certification	IEC 60068-2-14 IEC 60068-2-1 IEC 60068-2-2 IEC 60068-2-78 IEC 60068-2-30 Standard IEC 60529 NEMA IEC 60695-2-11 IEC 60255-5 IEC 60255-5 IEC 60255-5 ANSI C37.90 EN 50263 harmonized	Ab Bb Cab Db Level / Class IP52 Type 12 European directives: 89/336/EEC Electron 92/31/EEC Amendme 93/68/EEC Amendme 93/68/EEC Amendme 95	0.5 ppm H ₂ S; 1 ppm SO ₂ 21 days; 75 % HR; 25 °C; 0.01 ppm H ₂ S; 0.2 ppm SO ₂ ; 0.2 ppm NO ₂ ; 0.01 ppm Cl ₂ -25 °C at +70 °C; 5 °C/min -25 °C +70 °C 56 days; 93 % RH; 40 °C 6 days; 95 % RH; 55 °C Value Other panels IP20 650 °C with glow wire 5 kV ⁽¹⁾ 2 kV 1mn (indication output) 1.5 kV 1 mn (control output) 1.5 kV 1 mn (control output) aggnetic Compatibility (EMC) Directive nt nt je Directive

Base unit Dimensions

Front view of Sepam.

Dimensions

Side view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Clearance for Sepam assembly and wiring.

A CAUTION HAZARD OF CUTS Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

AMT880 mounting plate.

Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Front panel: 1.5 mm (0.05 ln) to 6 mm (0.23 ln) thick.

Assembly with AMT880 mounting plate

mm in 214 8.43 141 5.55

DE88164

Top view of Sepam with MES120, flush-mounted in front panel with spring clips. Mounting plate: 3 mm (0.11 ln) thick.

Connection diagrams Sepam series 80

Base unit Sepam series 80

Base unit Connection

Connector	Туре	Reference	Wiring
(A), (E)	Screw type	CCA620	 wiring with no fittings : 1 wire with max. cross-section 0.2 to 2.5 mm² (≥AWG 24-12) or 2 wires with max. cross-section 0.2 to 1 mm² (≥AWG 24-16) stripped length: 8 to 10 mm wiring with fittings: recommended wiring with Telemecanique fittings: DZ5CE015D for 1 x 1.5 mm² wire (AWG 16) DZ5CE025D for 1 x 2.5 mm² wire (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in)
	6.35 mm ring lugs	CCA622	 ■ 6.35 mm ring or spade lugs (1/4") ■ maximum wire cross-section of 0.2 to 2.5 mm² (≥ AWG 24-12) ■ stripped length: 6 mm ■ use an appropriate tool to crimp the lugs on the wires ■ maximum of 2 ring or spade lugs per terminal ■ tightening torque: 1.2 (13.27 lb-in)
C1), C2	Green RJ45 plug		CCA612
(D1), (D2)	Black RJ45 plug		CCA770: L = 0.6 m (2 ft) CCA772: L = 2 m (6.6 ft) CCA774: L = 4 m (13.1 ft) CCA785 for MCS025 module: L = 2 m (6.6 ft)
F	Blue RJ45 plug		CCA614
Functional earth	Ring lug		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm ² ■ maximum length: 300 mm (11.8 in)
(B1), (B2)	4 mm ring lugs	CCA630, CCA634 for connection of 1 A or 5 A CTs	 wire cross-section 1.5 to 6 mm² (AWG 16-10) tightening torque: 1.2 Nm (13.27 lb-in)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor

Connection characteristics

CAUTION

LOSS OF PROTECTION OR RISK OF NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.

Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.
- Failure to follow these instructions will result in death or serious injury.

Connection diagrams Sepam series 80

Connection characteristics

Connector	Туре	Reference	Wiring
(B1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
(B2)	Screw type	CCT640	VT wiring: same as wiring for the CCA620 Earthing connection: by 4 mm ring lug
For connectors (A) ,	(E), (C1), (C2), (D1), (D2), - : see Pag	ge 127.	

CAUTION

LOSS OF PROTECTION OR RISK OF

NUISANCE TRIPPING

If the Sepam is no longer supplied with power or is in fail-safe position, the protection functions are no longer active and all the Sepam output relays are dropped out. Check that this operating mode and the watchdog relay wiring are compatible with your installation.

Failure to follow this instruction can result in equipment damage and unwanted shutdown of the electrical installation.

A DANGER

■ Only qualified personnel should install this equipment. Such work should be

performed only after reading this entire set of instructions.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding. Always use a properly rated voltage sensing device to confirm that all power
- ∎ A

is off.
 Start by connecting the device to the protective earth and to the functional earth.

Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Connection diagrams Sepam series 80

Base unit Sepam C86

Connector	Туре	Reference	Wiring
(B1)	4 mm ring lugs	CCA630, for connection of 1 A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
	RJ45 plug	CCA671, for connection of 3 LPCT sensors	Integrated with LPCT sensor
B2	4 mm ring lugs	CCA630, for connection of 1 A, 2A or 5 A CTs	1.5 to 6 mm ² (AWG 16-10)
Functional earth	Ring lugs		Earthing braid, to be connected to cubicle grounding: ■ flat copper braid with cross-section ≥ 9 mm ² ■ maximum length: 300 mm
For connectors		127	·

 $\mbox{For connectors } (A), (E), (C1), (C2), (D1), (D2), \mbox{For Large 127}. \mbox{ :see Page 127}. \mbox{ :s$

Schneider Electric

Base unit Phase current inputs

Variant 1: phase current measurement by 3 x 1 A or 5 A CTs (standard connection)

Connection of 3 x 1 A or 5 A sensors to the CCA630 connector.

The measurement of the 3 phase currents allows the calculation of residual current.

Parameters

i arameters		
Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 12, 13	
Rated current (In)	1 A to 6250 A	

Variant 2: phase current measurement by 2 x 1 A or 5 A CTs

Connection of 2 x 1 A or 5 A sensors to the CCA630 connector.

Measurement of phase 1 and 3 currents is sufficient for all protection functions based on phase current.

This arrangement does not allow the calculation of residual current, nor use of ANSI 87T and 87M differential protection functions on the Sepam T87, M87, M88, G87 and G88.

Parameters

Sensor type	5 A CT or 1 A CT	
Number of CTs	11, 13	
Rated current (In)	1 A to 6250 A	

Variant 3: phase current measurement by 3 LPCT type sensors

Connection of 3 Low Power Current Transducer (LPCT) type sensors to the CCA671 connector. It is necessary to connect 3 sensors; if only one or two sensors are connected, Sepam goes into fail-safe position.

Measurement of the 3 phase currents allows the calculation of residual current.

The In parameter, primary rated current measured by an LPCT, is to be chosen from the following values, in Amps: 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150.

Parameter to be set using the SFT2841 software tool, to be completed by hardware setting of the microswitches on the CCA671 connector.

It is not possible to use LPCT sensors for the following measurements: phase-current measurements for Sepam T87, M88 and G88 with ANSI 87T

transformer differential protection (connectors (B1) and (B2))

- phase-current measurements for Sepam B83 (connector (B1))
- unbalance-current measurements for Sepam C86 (connector (B2)).

Parameters

Falameters	
Sensor type	LPCT
Number of CTs	11, 12, 13
Rated current (In)	25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000 or 3150 A

Note: Parameter In must be set twice:

- Software parameter setting using the advanced UMI or the SFT2841 software tool
- Hardware parameter setting using microswitches on the CCA671 connector

Base unit Residual current inputs

Variant 1: residual current calculation by sum of 3 phase currents

Description

Residual current is calculated by the vector sum of the 3 phase currents I1, I2 and I3, measured by 3 x 1 A or 5 A CTs or by 3 LPCT type sensors. See current input connection diagrams.

Parameters

Residual current	rated residual current	Measuring range
Sum of 3 Is	In0 = In, CT primary current	0.01 to 40 In0 (minimum 0.1 A)

Variant 2: residual current measurement by CSH120 or CSH200 core balance CT (standard connection)

Arrangement recommended for the protection of isolated or compensated neutral systems, in which very low fault currents need to be detected.

Parameters

Residual current	rated residual current	Measuring range
2 A rating CSH	In0 = 2 A	0.1 to 40 A
20 A rating CSH	In0 = 20 A	0.2 to 400 A

Variant 3: residual current measurement by 1 A or 5 A CTs and CCA634

Description

Residual current measurment by 1 A or 5 A CTs

- Terminal 7: 1 A CT
- Terminal 8: 5 A CT

Parameters

Residual current	rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

Base unit Residual current inputs

Variant 4: residual current measurement by 1 A or 5 A CTs and CSH30 interposing ring CT

Description

The CSH30 interposing ring CT is used to connect 1 A or 5 A CTs to Sepam to measure residual current:

 CSH30 interposing ring CT connected to 1 A CT: make 2 turns through CSH primary

■ CSH30 interposing ring CT connected to 5 A CT: make 4 turns through CSH primary.

Parameters

Residual current	rated residual current	Measuring range
1 A CT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)
5ACT	In0 = In, CT primary current	0.01 to 20 In0 (minimum 0.1 A)

Variant 5: residual current measurement by core balance CT with ratio of 1/n (n between 50 and 1500)

Description

The ACE990 is used as an interface between a MV core balance CT with a ratio of $1/n (50 \le n \le 1500)$ and the Sepam residual current input. This arrangement allows the continued use of existing core balance CTs on the installation.

Parameters

1 anamotoro		
Residual current	rated residual current	Measuring range
ACE990 - range 1 (0.00578 ≤ k ≤ 0.04)	In0 = Ik.n ⁽¹⁾	0.01 to 20 In0 (minimum 0.1 A)
ACE990 - range 2 (0.00578 ≤ k ≤ 0.26316)	In0 = Ik.n (1)	0.01 to 20 In0 (minimum 0.1 A)

(1) n = number of core balance CT turns

k = factor to be determined according to ACE990 wiring and setting range used by Sepam

Connection diagrams Sepam series 80

Phase voltage inputs

Residual voltage input Main channels

Variant 1: measurement of 3 phase-to-neutral voltages (3 V, standard connection)

Phase voltage input connection variants

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, V0 Σ .

Variant 4: measurement of 1 phase-to-neutral voltage (1 V)

This variant does not allow the calculation of residual voltage.

Variant 5: measurement of

residual voltage V0

voltage.

Residual voltage input connection variants

Variant 6: measurement of residual voltage Vnt in generator neutral point

Phase voltage inputs

Residual voltage input Additional channels for Sepam B83

Additional phase voltage input connection variants

Variant 2: measurement of 2 phase-to-phase voltages (2 U')

Variant 1: measurement of 3 phase-to-neutral voltages (3 V', standard connection)

Measurement of the 3 phase-to-neutral voltages allows the calculation of residual voltage, V'0 Σ .

Variant 3: measurement of 1 phase-to-phase voltage (1 U')

This variant does not allow the calculation of residual voltage.

This variant does not allow the calculation of residual voltage.

Variant 4: measurement of 1 phase-to-neutral voltage (1 V')

This variant does not allow the calculation of residual voltage.

Additional residual voltage input connection

Schneider Electric

Connection diagrams Sepam series 80

Phase voltage inputs

Residual voltage input Additional channel for Sepam B80

Connection to measure one additional voltage

This connection should be used to measure:

■ three phase-to-neutral voltages V1, V2, V3 on busbars no. 1

■ one additional phase-to-neutral voltage V'1 (or one additional phase-to-phase voltage U'21) on busbars no. 2.

This connection should be used to measure:

■ two phase-to-phase voltages U21, U32 and one residual voltage V0 on busbars no. 1

■ one additional phase-to-phase voltage U'21 (or one additional phase-to-neutral voltage V'1) on busbars no. 2.

Phase voltage inputs

Residual voltage input Available functions

The availability of certain protection and metering functions depend on the phase and residual voltages measured by Sepam.

The table below gives the voltage input connection variants for which for each protection and metering function dependent on measured voltages is available. Example:

The directional overcurrent protection function (ANSI 67N/67NC) uses residual voltage V0 as a polarization value.

It is therefore operational in the following cases:

measurement of the 3 phase-to-neutral voltages and calculation of

 $V0\Sigma (3V + V0\Sigma, variant 1)$

measurement of residual voltage V0 (variant 5).

The protection and metering functions which do not appear in the table below are available regardless of the voltages measured.

Phase voltages measured			3 V + V	0Σ		2 U			1 U			1 V	
(connection variant)			(var. 1	I)		(var. 2))		(var. 3)			(var. 4)	
Residual voltage measured		-	V0	Vnt	-	V0	Vnt	-	V0	Vnt	-	V0	Vnt
(connection variant)			(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)		(v. 5)	(v. 6)
Protection functions dependent on voltage	es measured					1							
Directional phase overcurrent	67	-		-	•								
Directional earth fault	67N/67NC	•		-									
Directional active overpower	32P	•		•	•		•						
Directional reactive active overpower	32Q	•		•	•								
Directional active underpower	37P	•		•	•								
Field loss (underimpedance)	40	•		•	•		•						
Pole slip, phase shift	78PS	•		•	•								
Voltage-restrained overcurrent	50V/51V	•											
Underimpedance	21B	•		-	•								
Inadvertent energization	50/27												
100 % stator earth fault	64G2/27TN												
Overfluxing (V/Hz)	24							•					
Positive sequence undervoltage	27D												
Remanent undervoltage	27R							∎□∅			∎□Ø		
Undervoltage (L-L or L-N)	27							∎□∅			∎□∅		
Overvoltage (L-L or L-N)	59							∎□∅			∎□∅		
Neutral voltage displacement	59N												
Negative sequence overvoltage	47				•								
Overfrequency	81H							∎□∅			∎□∅		
Underfrequency	81L							∎□∅			∎□Ø		
Rate of change of frequency	81R	•		-	•								
Measurements dependent on voltages me	asured												
Phase-to-phase voltage U21, U32, U13 or U'2	1, U'32, U'13			-				U21, U'21	U21	U21			
Phase-to-neutral voltage V1, V2, V3 or V'1, V'2	2, V'3										V1, V'1	V1, V'1	V1
Residual voltage V0 or V'0				-									
Neutral point voltage Vnt				•			•			•			•
Third harmonic neutral point or residual voltage	;			•			•			•			•
Positive sequence voltage Vd or V'd / negative sequence voltage Vi or V'i													
Frequency								∎□∅			∎□∅		
Active / reactive / apparent power: P, Q, S		•		-	•			•		•			
Peak demand power PM, QM		•		-	•			•		•			
Active / reactive / apparent power per phase : P1/P2/P3, Q1/Q2/Q3, S1/S2/S3		■ ⁽¹⁾	■ ⁽¹⁾	■ ⁽¹⁾		■ ⁽¹⁾					P1/ Q1/S1	P1/ Q1/S1	P1/ Q1/S1
Power factor				-	•			•		-			
Calculated active and reactive energy (±Wh, ±V	VARh)			•	•			•		•			
Total harmonic distortion, voltage Uthd		•		-	•			•		•			
Phase displacement $\phi 0$, $\phi' 0$				-				1				•	
Phase displacement $\phi 1, \phi 2, \phi 3$				•	•			1	1	1			
Apparent positive sequence impedance Zd		•		-	•								
Apparent phase-to-phase impedances Z21, Z3	32, Z13		•	-	•								
Eurotion available on main voltage channels			1	1		-!			1	1		1	

■ Function available on main voltage channels.

Function available on Sepam B83 additional voltage channels.
 Function available on Sepam B80 additional voltage channel, according to the type of the additional voltage measured.
 (1) If all three phase currents are measured.

Schneider Blectric

schneider-electric.com

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... The electrical installation guide

According to IEC 60364

This guide, part of the Schneider Electric offer, is the essential tool to "guide" you any time in your business:

- ullet design office, consultant
- contractor, panelbuilder
- teacher, trainer.

Comprehensive

and concrete information on:

- all the new technical solutions
- all the components
- of an installation from a global point of view
- all the IEC standards modifications
- all the fundamental
- electrotechnical knowledge
- all the design stages, from
- medium to low voltage.

and the local division of the second		
	-	
-	100	and a local division of
-	31	-

Sepam series 20 Sepam series 40 Sepam series 80

Additional modules and accessories

Range description	3
Sepam series 20 and Sepam series 40	51
Sepam series 80	89
Software	145
Sepam software	145
SFT2841 setting and operating software	146
Function	146
SFT2841 connection to Sepam	148
Adaptation of the predefined functions	149
SFT2826 disturbance recording data display software	150
SFT850 configuration software for IEC 61850 protocol	151
SFT2885 programming software - Logipam	152
Logic input / output modules	154
MES114 modules	154
Logic input / output assignment of Sepam series 20	156
Logic input / output assignment of Sepam series 40	157
MES120, MES120G, MES120H 14 input / 6 output module	158
Presentation	158
Installation	159
Logic input / output assignment	160
Remote modules	162
Selection guide and connection	162
MET148-2 Temperature sensor module	163
MSA141 Analog output module	165
DSM303 Remote advanced UMI module	166
MCS025 Synchro-check module	168
Other modules	172
Sepam 100 LD	172
Presentation	172
High impedance differential protection	173
Sensors and surge limiters	174
Description and connection	175
Characteristics and dimensions	177
Sepam 100 MI	178
Presentation	178
Block and connection diagrams	179
Characteristics and dimensions	182

Sepam series 20 Sepam series 40 Sepam series 80

Additional modules and accessories

Communication accessories	183
Selection guide	183
Communication interfaces	184
Communication interface connection	184
ACE949-2 2-wire RS 485 network interface	186
ACE959 4-wire RS 485 network interface	187
ACE937 Fiber optic interface	188
ACE969TP-2 and ACE969FO-2 Network interfaces	189
ACE850TP and ACE850FO network interfaces	194
Converters	198
ACE909-2 RS 232 / RS 485 converter	198
ACE919CA and ACE919CC RS 485 / RS 485 converters	200
Sepam IEC 61850 level 1 ECI850	202
PowerLogic EGX100	206
PowerLogic EGX300	207
Sensors	209
Selection guide	209
Voltage transformers	210
1A/5A current transformers	211
LPCT type current sensors	214
Test accessories	215
CSH120 and CSH200 Core balance CTs	217
CSH30 Interposing ring CT	219
ACE990 Core balance CT interface	220
Order form	223
Index	233
Sepam software

Presentation

Three types of Sepam PC software are available:

- SFT2841 setting and operating software
- SFT2826 disturbance recording data display software
- SFT2885 programming software for the Sepam series 80 (Logipam)
- SFT850 advanced-configuration software for IEC 61850 protocol.

SFT2841 and SFT2826 software

SFT2841 and SFT2826 software is provided on the same CD-ROM as the Sepam documentation in PDF format.

PC connection cord

The CCA783 PC connection cord, to be ordered separately, is designed to connect a PC to the RS 232 port on the front panel of a Sepam unit in order to use the SFT2841 software in point-to-point connected mode.

The USB/RS232 TSXCUSB232 converter may be used with the CCA783 connection cord for connection to a USB port.

SFT2885 software

SFT2885 is available on a separate CD-ROM.

SFT850 software

SFT850 is available on a separate CD-ROM.

Minimum configuration required

SFT2841 and SFT	SFT2841 and SFT2826 software											
Operating systems	Microsoft 2000/XP											
RAM	128 MB											
Space on disk	200 MB											
SFT2885												
Operating systems	Microsoft 2000/XP											
B 4 4 4												

Microsoft 2000/XP
64 MB
30 MB

SFT850	
Operating systems	Microsoft 2000/XP
RAM	512 MB
Space on disk	200 MB

SFT2841 setting and operating software Function

The SFT2841 software is the setting and operating tool for Sepam series 20, Sepam series 40 and Sepam series 80.

- It may be used:
- prior to commissioning and without connection to Sepam, to prepare Sepam
- protection and parameter settings
- during commissioning, on a PC connected point-to-point to the front panel Sepam: □ to load, unload and modify Sepam protection and parameter settings
- □ to obtain all measurements and useful information during commissioning
- during operation, on a PC connected to a set of Sepam relays via an E-LAN
- multipoint communication network:
- □ to manage the protection system
- □ to monitor the status of the electrical network
- □ to run diagnostics on any incidents affecting the electrical network.

Preparation of Sepam parameter and protection settings in unconnected mode

- configuration of Sepam and optional modules, and entry of general settings
- enabling/disabling of functions and entry of protection settings
- adaptation of predefined control and monitoring functions
- creation of personalized mimic diagrams for local display.

Sepam commissioning via a point-to-point connection to the front panel

- access to all functions available in unconnected mode, after entering the protection-setting or parameter-setting password
- transfer of Sepam parameter and protection setting file, prepared in unconnected
- mode (downloading function), protected by the parameter-setting password display of all measurements and useful information during commissioning
- display of all measurements and useral mormation during
 display of logic input, logic output and LED status
- test of logic outputs
- display of Logipam variables
- setting of Logipam parameters (configuration bits, timers, etc.)
- modification of passwords.

Management of protection functions and network diagnostics with an E-LAN multipoint network connection

■ reading of all Sepam protection and parameter settings, modifications following

- entry of the protection-setting or parameter-setting password
- display of all the Sepam measurement data
- display of Sepam, switchgear and network diagnosis data
- display of time-tagged alarm messages
- retrieval of disturbance recording data.

Efficient, easy-to-use software

- menus and icons for fast, direct access to the data required
- guided navigation to go through all the data input screens in the natural order
- all data on the same function together in the same screen
- trilingual software: English, French, Spanish
- on-line help, with all the technical information needed to use
- and implement Sepam
- familiar file management in Microsoft Windows environment:
- □ all file management services included: copy / paste, save, etc.
- □ printing of parameter and protection settings in standard layout.

SFT2841: Sepam series 80 hardware configuration.

SFT2841: output testing

SFT2841: alarm history

SFT2841 setting and operating software Function

SFT2841: Sepam series 80 sensor parameter setting.

SFT2841: Sepam series 80 application, with protection function measurement origin.

SFT2841: protection settings.

SFT2841: Sepam diagnosis.

The table below gives the SFT2841 functions available for each of the 3 Sepam series: Sepam series 20, Sepam series 40 and Sepam series 80.

NC: function available in unconnected mode.

S: function available with SFT2841 connected via Sepam front panel.

E: function available with SFT2841 connected to Sepam via E-LAN communication network.

Functions	Se	ries	20	Se	ries	40	Se	ries	80
Management									
On-line help	-			•					
Management of parameter and protection setting files: creation, saving, downloading and uploading	•			•					
Downloading and uploading of parameter and protection setting files		-				(1)			
Exporting of parameter and protection settings in a text file	-	-		•	-				
Printing of parameter and protection settings	•			•					
Modification of passwords, one for parameter setting and one for protection setting		-	-		•				
Sepam parameter setting									
Display of parameter settings				•					
Hardware configuration and parameter entry protected by parameter setting password	•			•					
Graphical parameter setting assistance								•	-
Standard configuration for IEC 61850 network	•			•		-		-	
Protection setting									
Display of protection settings				•					
Entry of protection settings, protected by protection setting password	-			•			•		
Definition of customized tripping curve									
Adaptation of the predefined function	S								
Display and modification of the control matrix				•					
Logic equation editing									
Number of instructions				100			200		
Number of dedicated remote indications				10			20		
Display of logic equations								•	
Load the Logipam program									
Setting of Logipam parameters									
Assignment of LEDs on front	-			•					
Editing of user messages								-	
Number of user messages				30			100		
Editing of personalized mimic diagram									
Assistance in commissioning and op	erati	ng th	ne ins	stalla	tion				
Display of all the Sepam measurement data									
Display of switchgear diagnosis assistance data		•	-		•	•		-	
Display of machine operating assistance data								•	
Display of time-tagged alarm messages					-			•	
Tripping context					-			•	-
Retrieval of disturbance recording files		•	-		•	-		•	
Display of Logipam variables									
Display of logic input/output status								-	-
Output testing								-	
Sepam diagnosis									

(1) Except for logic equations and personalized messages.

SFT2841 setting and operating software SFT2841 connection to Sepam

SFT2841 connection to the front panel of a Sepam

Connection of the PC RS232 serial port to the communication port on the front panel of Sepam series 20, Sepam series 40 or Sepam series 80 using the CCA783 cord or the USB/RS232 (TSXCUSB232) converter + CCA783.

SFT2841 connection to a set of Sepam relays

The SFT2841 can be connected to a set of Sepam relays, themselves connected to a E-LAN communication network in one of the three architectures presented below. These connections do not require any further software development work.

SFT2841 setting and operating software

Adaptation of the predefined functions

SFT2841: logic equation editor.

SFT2841: mimic-diagram editor.

SFT2841: control matrix.

Logic equation editor (Sepam series 40 and series 80)

The logic equation editor included in the SFT2841 software can be used to:

- complete protection function processing:
- □ additional interlocking
- □ conditional inhibition/validation of functions
- □ etc.

■ adapt predefined control functions: particular circuit breaker or recloser control sequences, etc.

Note that the use of the logic equation editor excludes the possibility of using the Logipam programming software.

A logic equation is created by grouping logic input data received from:

- protection functions
- logic inputs
- Iocal control orders transmitted by the mimic-based UMI
- remote control orders using the Boolean operators AND, OR, XOR, NOT, and automation functions such as

time delays, bistables and time programmer. Equation input is assisted and syntax checking is done systematically.

The result of an equation may then be:

- assigned to a logic output, LED or message from the control matrix
- transmitted by the communication link, as a new remote indication
- utilized by the circuit breaker/contactor control function to trip, close or inhibit
- breaking device closing
- used to inhibit or reset a protection function.

Alarms and operating messages (Sepam series 40 and series 80)

New alarm and operating messages may be created using the SFT2841 software. The new messages are added to the list of existing messages and may be assigned via the control matrix for display:

- on Sepam's advanced UMI
- in the SFT2841 "Alarms" and "Alarm History" screens.

Local-control mimic diagram (Sepam series 80)

The local-control mimic diagram displayed on the UMI can be personalized by adapting one of the supplied, predefined mimic diagrams or by creating a diagram from scratch.

The mimic-diagram editor can be used to:

create a fixed, bitmap background (128 x 240 pixels) using a standard drawing tool
 create animated symbols or use predefined animated symbols to represent the

electrotechnical devices or other objects
assign the logic inputs or internal status conditions that modify the animated

symbols. For example, the logic inputs for the circuit-breaker position must be linked to the circuit-breaker symbol to enable the display of the open and closed conditions

assign the logic outputs or internal status conditions that are activated when an

opening or closing order are issued for the symbol

display the current, voltage and power measurements on the mimic diagram.

Control matrix

The control matrix is used for simple assignment of data from:

- protection functions
- control and monitoring functions
- logic inputs
- logic equations or the Logipam program
- to the following output data:
- logic outputs
- 9 LEDs on the front of Sepam
- messages for local display
- triggering of disturbance recording.

SFT2826 disturbance recording data display software

SFT2826: analysis of a disturbance data record.

Function

The SFT2826 software is used to display, analyze and print disturbance data recorded by Sepam.

It uses COMTRADE (IEEE standard: Common format for transient data exchange for power systems) files.

Transfer of disturbance recording data

Before they are analyzed by SFT2826, the disturbance recording data must be transferred from Sepam to the PC:

- by the SFT2841 software
- or by the Modbus communication link.

Analysis of disturbance recording data

- selection of analog signals and logic data for display
- zoom and measurement of time between events
- display of all numerical values recorded
- exporting of data in file format
- printing of curves and/or numerical values recorded.

Characteristics

- The SFT2826 software comes with the SFT2841 software:
- 4 languages: English, French, Spanish, Italian
- on-line help with description of software functions.

SFT850 configuration software for IEC 61850 protocol

Function

The SFT850 software is used to easily create, modify and consult the SCL (Substation Configuration Language) configuration files for the IEC 61850 communication protocol:

■ CID (Configured IED description) file for configuration of a device connected to an IEC 61850 network

SCD (Substation Configuration Description) file for IEC 61850 configuration of substation equipment.

The SFT850 software supplements the standard IEC 61850 configuration created with the SFT2841 software in cases where the configuration must be precisely adapted to system requirements.

Adding or deleting equipment

The SFT850 software can be used to add or delete connected equipment in the IEC 61850 configuration. If a Sepam unit is added, the software uses the supplied ICD (IED capability description) file to start configuration.

Equipment connection

The SFT850 software describes the data for equipment connection to the network.

Editing the equipment configuration

The configuration of a given device described in a CID or SCD file can be modified: add, modify or delete datasets. A dataset is used to group data and optimise communication

■ add, modify or delete RCBs (Report Control Block). A Report Control Block defines dataset transmission conditions

add, modify or delete GCBs (Goose Control Block). A Goose Control Block defines how data is exchanged between Sepam units

modify dead measurement bands. This parameter is used to optimise communication in that measurements are transmitted only if they have changed significantly.

Generating CID files

The SFT850 software can generate the CID file for each device on the basis of an SCD file.

SFT2885 programming software - Logipam

Function

The SFT2885 programming software (called Logipam) is intended exclusively for the Sepam series 80 and can be used to:

adapt predefined control and monitoring functions

• program specific control and monitoring functions, either to replace the predefined versions or to create completely new functions, to provide all the functions required by the application.

It is made up of:

a ladder-language program editor used to address all Sepam data and to program complex control functions

■ a simulator for complete program debugging

■ a code generator to run the program on Sepam.

The ladder-language program and the data used can be documented and a complete file can be printed.

Only the Sepam series 80 with a cartridge containing the Logipam SFT080 option can run the control and monitoring functions programmed by the Logipam SFT2885 software.

The complete Logipam software is made up of the executable program run by Sepam and the source program that can be modified by the Logipam SFT2885 programming software.

The SFT2841 setting and operating software, required for implementation of the Logipam program, offers the following functions:

association of the complete Logipam program with the Sepam parameter and protection settings

■ loading and unloading of Logipam program, parameters and settings in the Sepam cartridge

- running of the functions programmed with Logipam:
- □ display of the status of Logipam internal bits
- □ setting of Logipam parameters: configuration bits, timers, etc.

Operating principle

SFT2885 programming software - Logipam

Characteristics

Program structure

A ladder-language program is made up of a series of rungs executed sequentially:

- maximum 1000 lines with 9 contacts and 1 coil maximum per line
- with a maximum total number of 5000 contacts and coils.
- Comments may be made for each line.

Sections

The program can be broken down into sections and subsections to clarify the structure and facilitate reading. It is possible to set up three levels of sections. Comments may be added for each section.

Execution of each section can be subjected to conditions.

Variable editor

Each variable is defined by an invariable identifier and can be linked to a name or a comment.

The programmer can decide to work directly with the identifiers or with the linked names.

The list of the variables used and the cross references may be consulted during programming.

Graphic elements in the ladder language

The graphic elements are the instructions in the ladder language:

- NO and NC contacts
- rising and falling-edge detection contacts
- direct or negated coils
- set and reset coils
- coils and contacts linked to timers, counters and clocks.

Available resources

Sepam variables

All the data used by Sepam functions can be addressed by Logipam:

- all logic inputs and outputs
- all remote-control orders and remote indications
- (the remote-control orders and remote indication used in the Logipam program are no longer used by the predefined functions)
- all protection-function inputs and outputs
- all inputs and outputs for the predefined control and monitoring functions
- all inputs and outputs for symbols in the mimic-based UMI
- all system data
- all logic inputs GOOSE

Logipam internal variables

 64 configuration bits to parameter program processing, settable via the SFT2841 software and the display

- 128 bits used by the control matrix to control LEDs, messages and logic outputs
- 128 internal bits that are saved
- 512 internal bits that are not saved.

Logipam functions

- 60 timers that can be set for a rising edge (TON) or a falling edge (TOF)
- 24 incremental counters with adjustable thresholds
- 4 clocks for a given week.

Debugging tools

The Logipam software offers a complete set of tools for program debugging:

■ step-by-step or continuous program execution to simulate the programmed functions

- color animation of the rungs and all program variables
- grouping in a table of all program variables requiring monitoring.

Documentation

The application file can be printed in part or in whole.

The application file can be personalized : front page, title block, general description of the program, etc.

SFT2885: program debugging.

SFT2885: variable editor.

Logic input / output modules

MES114 modules

10 input/4 output MES114 module.

Function

The 4 outputs included on the Sepam series 20 and 40 may be extended by adding an optional MES114 module with 10 inputs and 4 outputs, available in 3 versions:

- MES114: 10 DC inputs voltage from from 24 V DC to 250 V DC
- MES114E: 10 inputs, voltage 110-125 V AC or V DC
 MES114F: 10 inputs, voltage 220-250 V AC or V DC.

Characteristics

STICS					
ıle					
0.28 kg (0.6	617 lb)				
-25 °C to +70) °C (-13 °Fto	+158 °F)			
Same chara	cteristics as S	Sepam base	units		
MES114	MES114	E	MES114	F	
24 to 250 V DC	110 to 125 V DC	110 V AC	220 to 250 V DC	220 to 240 V AC	
19.2 to 275 V DC	88 to 150 VV DC	88 to 132 V AC	176 to 275 V DC	176 to 264 V AC	
1	1			47 to 63 H	Z
	-	-	-	-	
14 V DC	82 V DC	58 V AC	154 V DC	120 V AC	
≥ 19 V DC	≥88 V DC	≥88 V AC	≥ 176 V DC		2
≤6VDC	≤75 V DC	≤22 V AC	≤ 137 V DC	≤48 V AC	
Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
lay outpu	ut				
DC	24 / 48 V DC	2 127 V DC	220 V DC	250 V CC	
AC (47.5 to 63 Hz)	-	-	-	-	100 to 240 V AC
	8A	8A	8A	8A	8A
Resistive load	8/4A	0.7 A	0.3 A	0.2A	8A
Load L/R < 20 ms	6/2A	0.5 A	0.2 A	-	-
Load L/R < 40 ms	4/1A	0.2 A	0.1 A	-	-
Load cos φ > 0.3	-	-	-	-	5A
	< 15 A for 20	0 ms			
Enhanced					
Enhanced					
nunciatio	on relay o	output			
DC	24 / 48 V DC	127 V DC	220 V DC	250 V DC	
AC (47.5 to	-	-	-	-	100 to 240 V AC
03 HZ)	2 A	2 A	2 A	2 A	2A
Resistive load	2/1A	0.6 A	0.3 A	0.2A	-
Load L/R < 20 ms	2/1A	0.5 A	0.15 A	-	-
	-	-	-	-	1 A
Load cos φ > 0.3					
	< 15 A for 20	10 ms			
	< 15 A for 20	10 ms			
	$-25 \circ C \text{ to } +70$ Same chara $MES114$ 24 to 250 V DC 19.2 to 275 V DC / 3 mA 14 V DC $\geq 19 \text{ V DC}$ $\leq 6 \text{ V DC}$ Enhanced $Iay outpu$ Carbon Control C	Ie 0.28 kg (0.617 lb) -25 °C to +70 °C (-13 °F to Same characteristics as S MES114 MES114 24 to 110 to 250 V DC 125 V DC 19.2 to 88 to 275 V DC 150 VV DC / / 3 mA 3 mA 14 V DC 82 V DC ≥ 19 V DC ≥ 88 V DC ≤ 6 V DC ≤ 75 V DC Enhanced Enhanced Enhanced Enhanced BA Resistive 8/4 A load Load 6/2 A L/R < 20 ms Load 4/1 A L/R < 40 ms Load - Cos φ > 0.3 Enhanced Enhanced Enhanced Enhanced Enhanced Icad 2/1 A Load 2/1 A Load 2/1 A Load 2/1 A Load 2/1 A Load	le 0.28 kg (0.617 lb) -25 °C to +70 °C (-13 °Fto +158 °F) Same characteristics as Sepam base MES114 MES114E 24 to 110 to 110 VAC 250 V DC 125 V DC 19.2 to 88 to 88 to 275 V DC 150 VV DC 132 VAC / / 47 to 63 Hz 3 mA 3 mA 3 mA 14 V DC 82 V DC 58 VAC ≥ 19 V DC ≥ 88 V DC ≥ 88 VAC ≤ 6 V DC ≤ 75 V DC ≤ 22 VAC Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced 120 24 / 48 V DC 127 V DC AC (47.5 to 63 Hz) 8A 8A Resistive 8/4A 0.7 A load 6/2A 0.5 A L/R < 20 ms Load 6/2A 0.5 A L/R < 40 ms Load cos φ > 0.3 < 15 A for 200 ms Enhanced Enhanced Enhanced Enhanced AC (47.5 to 63 Hz) 2A 2A Resistive 8/4 A 0.7 A load	Ic 0.28 kg (0.617 lb) -25 °C to +70 °C (-13 °Fto +158 °F) Same characteristics as Sepam base units MES114 MES114E MES114 24 to 110 to 110 VAC 220 to 250 VDC 125 VDC 125 VDC 132 VAC 275 VDC 1 9.2 to 88 to 88 to 176 to 275 VDC 130 VDC 132 VAC 275 VDC 1 1 V 3 mA 3 mA 3 mA 3 mA 3 mA 14 VDC 82 VDC 58 VAC ≥ 176 VDC ≥ 19 VDC ≥ 88 VDC ≥ 88 VAC ≥ 176 VDC ≤ 6 VDC ≤ 75 VDC ≤ 22 VAC ≤ 137 VDC Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced Enhanced BA 8A 8A 8A Resistive 8/4A 0.7A 0.3A 0ad 6/2A 0.5A 0.2A Load 6/2A 0.5A 0.2A Load 6/2A 0.5A 0.2A Load	Ile 0.28 kg (0.617 lb) -25 °C to +70 °C (-13 °Fto +158 °F) Same characteristics as Sepam base units MES114 MES114E MES114 F 24 to 110 VAC 220 to 220 to 250 V DC 125 V DC 220 to 220 to 24 to 110 VAC 220 to 220 to 250 V DC 125 V DC 220 to 220 to 250 V DC 125 V DC 266 V AC 176 V DC 275 V DC 266 V AC 176 V DC 220 V DC 260 V DC 47 to 63 H 3 mA 3 mA 3 mA 19 VDC 288 V DC 27 V DC 210 V DC 248 V AC En

Logic input / output modules

MES114 modules

Description

(L), (M) and (K) : 3 removable, lockable screw-type connectors

- (L): connectors for 4 relay outputs:
- O11: 1 control relay output
- O12 to O14: 3 annunciation relay outputs
 (M): connectors for 4 independent logic inputs I11 to I14
- (K) : connectors for 6 logic inputs:
- I21: 1 independent logic input
- I21. I independent logic input
 I22 to I26: 5 common point logic inputs.
- 1 25-pin sub-D connector to connect the module to the base unit.

2 Voltage selector switch for MES114E and MES114F module inputs, to be set to:

- V DC for 10 DC voltage inputs (default setting)
- VAC for 10 AC voltage inputs.

 ${\bf 3}$ Label to be filled in to indicate the chosen parameter setting for MES114E and MES114F input voltages.

The parameter setting status can be accessed in the "Sepam Diagnosis" screen of the SFT2841 software tool.

Parameter setting of the inputs for AC voltage (VAC setting) inhibits the "operating time measurement" function.

Assembly

- 1. Insert the 2 pins on the MES module into the slots 1 on the base unit.
- 2. Flatten the module up against the base unit to plug it into the connector 2.
- 3. Tighten the mounting screw 3.

Connection

The inputs are potential-free and the DC power supply source is external.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

■ Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it.

- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Wiring of connectors (), () and ():

- Wiring with no fittings:
- □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (AWG 24-12)
- $\hfill\square$ or 2 wires with maximum cross-section 0.2 to 1 mm² (AWG 24-18)
- □ stripped length: 8 to 10 mm (0.315 to 0.39 in)
- Wiring with fittings:
- □ terminal 5, recommended wiring with Telemecanique fitting:
- DZ5CE015D for 1 wire 1.5 mm² (AWG 16)
- DZ5CE025D for 1 wire 2.5 mm² (AWG 12)
- AZ5DE010D for 2 wires 1 mm² (AWG 18)
- □ tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

Logic input / output assignment of Sepam series 20

The use of the preset control and monitoring functions requires exclusive parameter setting and particular wiring of the inputs according to their application and the type of Sepam.

The advanced UMI or the SFT2841 software may be used to assign inputs and set the control and monitoring function parameters.

Since an input may only be assigned to a single function, not all the functions are available at the same time.

Example: if the logic discrimination function is used, the switching of groups of settings function may not be used.

Table of input/output assignment by application

	14510	or mpae	outputu	oorginne	int by up	on outron	
Functions	S20	S24	T20	T24	M20	B21 - B22	Assignmen
Logic inputs							
Dpen position	•	•	•	•		•	111
Closed position	•	•	•	•	•	•	112
ogic discrimination, receive blocking input	•						113
Switching of groups of settings A/B	-	-		•	•		
external reset	•	•	•	•		•	114
External tripping 4 ⁽¹⁾	•	•			•	•	
External tripping 1 ⁽¹⁾	•		(2)	(2)		•	121
xternal network synchronization	•	•				•	
External tripping 2 ⁽¹⁾	•		(3)		•	•	122
Notor re-acceleration							
xternal tripping 3 ⁽¹⁾	•	•	(4)	(4)			123
Buchholz alarm ⁽¹⁾ (Buchholz alarm message)							
otor rotation detection							
hermistor tripping (1)			•	•	•		
nhibit earth fault protection		•					
End of charging position	•	•	•	•			124
hermostat alarm ⁽¹⁾ (thermostat alarm message)			•	•			
hermistor alarm (1)			•	•	•		
External tripping 5 and 50BF activation (1)		■ ⁽¹⁾		■ ⁽¹⁾			
nhibit remote control, excluding TC1 ⁽¹⁾	•					•	125
nhibit remote control, including TC1 ⁽¹⁾	•	•	•	•	•	•	
F6-1	•	•	•	•	•	•	
F6-2	•	•	•				126
hange of thermal settings			•	•			
nhibit thermal overload			•	•	•		
nhibit recloser	•	•					
Logic outputs							
ripping	-	-	•	•	•	-	01
nhibit closing	•	•	•	•		•	02
/atchdog	•	•	•	•		•	04
lose order							011

Note: all of the logic inputs are available via the communication link and are accessible in the SFT2841 control matrix for other non predefined applications.

(1) These inputs have parameter setting with the prefix "NEG" for undervoltage type operation.

(2) Buchholz/Gas trip message.

(3) Thermostat trip message.

(4) Pressure trip message.

Logic input / output assignment of Sepam series 40

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below. all the logic inputs, whether or not assigned to predefined functions, may be used for the SFT2841 customization functions according to specific application needs: in the control matrix, to link inputs to output relays, LED indications or display messages

in the logic equation editor, as logic equation variables

■ the control logic of each input may be inverted for undervoltage type operation.

Assignment table of logic inputs by application

							Inmer								
Functions	S40	S41	S42	S43	S50	S51	S52	S53	T40	T42	T50	T52	M41	G40	Assignment
Logic inputs															
Open position	•	-	•	•	-	-	•	•	•	•	•		•		111
Closed position		-							•				•		112
Logic discrimination,		-							•				•		Free
receive blocking input 1															
Logic discrimination,															Free
receive blocking input 2															
Switching of groups of	•	-	•	•	-	-	•	-	•	•	•	•	•	•	113
settings A/B															
External reset	•	•	•	•	•	•	•		•				•		Free
External tripping 1	•	•	•	•	•	-	•		•				•	•	Free
External tripping 2	•	•	•	•	•	•	•	•	•			•	•	•	Free
External tripping 3	•	•	•	•	•	-	•	•	•				•		Free
Buchholz/gas tripping									•			•			Free
Thermostat tripping									•			•			Free
Pressure tripping									•	•	•	•			Free
Thermistor tripping									•	•	•	•	•	•	Free
Buchholz/gas alarm												•			Free
Thermostat alarm									•	•	•	•			Free
Pressure alarm									•	•	•	•			Free
Thermistor alarm												•	•		Free
End of charging position	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Free
Inhibit remote control	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Free
SF6	•	•	•	•	•	•	•		•			•	•		Free
Inhibit recloser	•	•	•	•	•	•	•	•							Free
External synchronization	•	•	•	•	•	•	•		•				•		121
Inhibit thermal overload									•			•	•		Free
Switching of thermal									•	•	•	•	•	•	Free
settings															
Motor re-acceleration													•		Free
Rotor rotation detection													•		Free
Inhibit undercurrent													•		Free
Inhibit closing															Free
Open order	•	•	•	•			•	•	•	•	•	•	•		Free
Close order		-				-							•		Free
Phase voltage transformer		-	•			-		•					•		Free
fuse melting															
Residual voltage	•	-	•	•	-	-	•	•	•	•	•	•	•	•	Free
transformer fuse melting															
External positive active	•	-	•	•	-	-	•	-	•	•	•	•	•	•	Free
energy counter															
External negative active	•	-	•	•	-	-	•	-	•	•	•	•	•	•	Free
energy counter															
External positive reactive	•	-	•	•	•	-	•	-	•	-	-	•	•	•	Free
energy counter															
External negative reactive	-	-	•	•	-	-	•	-	•	•	•	•	•	•	Free
energy counter															
Downstream load start up					-	-	•	-			-	•			
Logic outputs															
Tripping				-			-						-	-	01
Inhibit closing	•	•		•	•	•	•		•				•	•	O2
Watchdog	•	•		•	•	•	•		•				•	•	O4
Close order															011

Logic input / output modules

MES120, MES120G, MES120H 14 input / 6 output module Presentation

Function

The 5 output relays included on the Sepam series 80 base unit may be extended by adding 1, 2 or 3 MES120 modules with 14 DC logic inputs and 6 outputs relays, 1 control relay output and 5 indication relay outputs.

Two modules are available for the different input supply voltage ranges and offer different switching thresholds:

■ MES120, 14 inputs 24 V DC to 250 V DC with a typical switching threshold of 14 V DC

■ MES120G, 14 inputs 220 V DC to 250 V DC with a typical switching threshold of 155 V DC

■ MES120H, 14 inputs 110 V DC to 125 V DC with a typical switching threshold of 82 V DC.

Characteristics

MES120 14 input / 6 output module.

MEG400/MEG4000/MEG400U

WE5120/WE5120G	/ MES120H modules					
Weight		0,38 kg (0,83 lb)				
Operating temperature		-25 °C to +70 °C (-				
Environmental characteristics		Same characterist	ics as Sepam base	units		
Logic inputs		MES120	MES12	0G	MES120H	
Voltage		24 à 250 V DC	220 to 250	V DC	110 to 125 V DC	
Range		19.2 à 275 V DC	170 to 275	VDC	88 to 150 V DC	
Typical consumption		3 mA	3 mA		3 mA	
Typical switching threshold		14 V DC	155 V DC		82 V DC	
Input limit voltage	At state 0	< 6 V DC	< 144 V D(< 75 V DC	
	At state 1	> 19 V DC	> 170 V D0	2	> 88 V DC	
Isolation of inputs from other isol		Enhanced	Enhanced		Enhanced	
Control relay output	: Ox01					
Voltage	DC	24/48 V DC	127 V DC	220 V DC	250 V DC	
	AC (47.5 to 63 Hz)	-	-	-	-	100 à 240 V AC
Continuous current		8 A	8A	8 A	8A	8A
Breaking capacity	Resistive load	8/4A	0.7 A	0.3 A	0.2 A	8 A
	Load L/R < 20 ms	6/2A	0.5A	0.2 A	-	-
	Load L/R < 40 ms	4/1A	0.2A	0.1A	-	-
	Load p.f > 0.3	-	-	-	-	5A
Making capacity		< 15 A for 200 ms				
Isolation of inputs from other isol		Enhanced				
Relay output Ox02 to	o Ox06					
Tension	Continue	24/48 V DC	127 V DC	220 V DC	250 V DC	
	Alternative (47.5 à 63 Hz)	-	-	-	-	100 to 240 V AC
Continuous current		2 A	2 A	2 A	2A	2A
Breaking capacity	Load L/R < 20 ms	2/1A	0.5A	0.15 A	0.2 A	-
	Load p.f > 0.3	-	-	-	-	1 A

Load p.f > 0.3 Isolation of inputs from other isolated groups

Description

Enhanced

3 removable, lockable screw-type connectors.

1 20-pin connector for 9 logic inputs:

- Ix01 to Ix04: 4 independent logic inputs
- Ix05 to Ix09: 5 common point logic inputs.
- 2 7-pin connector for 5 common point logic inputs lx10 à lx14. 3 17-pin connector for 6 relay outputs:
- Ox01: 1 control relay output
- Ox02 to Ox06 : 5 indication relay outputs.

Addressing of MES120 module inputs / outputs:

- x = 1 for the module connected to H1
- x = 2 for the module connected to H2
- x = 3 for the module connected to H3.

4 MES120G, MES120H identification label (MES120 modules have no labels).

Installation of the second MES120 module, connected to base unit connector H2.

Logic input / output modules

MES120, MES120G, MES120H 14 input / 6 output module Installation

Assembly

- Installation of an MES120 module on the base unit
- insert the 2 pins on the MES module into the slots **1** on the base unit
- push the module flat up against the base unit to plug it into the connector H2
- partially tighten the two mounting screws 2 before locking them.
- MES120 modules must be mounted in the following order:
- if only one module is required, connect it to connector H1
- if 2 modules are required, connect them to connectors H1 and H2

■ if 3 modules are required (maximum configuration), the 3 connectors H1, H2 and H3 are used.

Installation of the second MES120 module, connected to base unit connector H2.

Connection

The inputs are potential-free and the DC power supply source is external.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

■Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

- ■NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
 Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Wiring of connectors

- wiring without fittings:
- □ 1 wire with maximum cross-section 0.2 to 2.5 mm² (\geq AWG 24-12)
- \Box or 2 wires with maximum cross-section 0.2 to 1 mm² (\ge AWG 24-16)
- \Box stripped length: 8 to 10 mm (0.31 to 0.39 in)
- wiring with fittings:
- □ recommended wiring with Schneider Electric fittings:
- DZ5CE015D for one 1.5 mm² wire (AWG 16)
- DZ5CE025D for one 2.5 mm² wire (AWG 12)
- AZ5DE010D for two 1 mm² wires (AWG 18)
- \Box tube length: 8.2 mm (0.32 in)
- □ stripped length: 8 mm (0.31 in).

MES120, MES120G, MES120H 14 input / 6 output module Logic input / output assignment

Inputs and outputs may be assigned to predefined control and monitoring functions using the SFT2841 software, according to the uses listed in the table below. The control logic of each input may be inverted for undervoltage type operation. All the logic inputs, whether or not assigned to predefined functions, may be used for the customization functions according to specific application needs:

■ in the control matrix (SFT2841 software), to connect an input to a logic output, a LED on the front of Sepam or a message for local indication on the display

■ in the logic equation editor (SFT2841 software), as logic equation variables

■ in Logipam (SFT2885 software) as input variables for the program in ladder language.

Logic Ox output assignment table

Functions	S80	S81	S82	S84	T81	T82 T87	M87	M81 M88	G87	G82 G88	B80	B83	C86	Assignment
Tripping / contactor control	•	•		•	•	•	•	•	•	•	•	•	•	01
Inhibit closing					-				-				•	O2 by default
Closing					-				-				-	O3 by default
Watchdog				-	•			•	•	•	•			O5
Logic discrimination, blocking send 1					•			•	•				•	O102 by default
Logic discrimination, blocking send 2				•					•	•				O103 by default
Genset shutdown									•					Free
De-excitation									•	-				Free
Load shedding								•						Free
AT, closing of NO circuit breaker	•				•				•	-				Free
AT, closing of coupling	•				•				•	•				Free
AT, opening of coupling	•				•				•	-				Free
Tripping of capacitor step (1 to 4)													•	Free
Tripping of capacitor step (1 to 4)														Free

Note: The logic outputs assigned by default may be freely reassigned.

Assignment table for logic Ix inputs common to all applications

Functions	S80	S81	S82	S84	T81	T82	M87	M81	G87	G82	B80	B83	C86	Assignment
						T 87		M88		G88				
Closed circuit breaker	•	-	-	-	-	-	•	•	•		-	-	•	1101
Open circuit breaker	•				•				•		•		•	1102
Synchronization of Sepam internal clock via external pulse	•				•				•		•		•	1103
Switching of groups of settings A/B	•				•	-	•		•		-		•	Free
External reset											-		•	Free
Earthing switch closed													•	Free
Earthing switch open	•				•		•		•		-		-	Free
External trip 1			•		•	•			•		•		•	Free
External trip 2													•	Free
External trip 3											-		-	Free
End of charging position					•						-		-	Free
Inhibit remote control (Local)													•	Free
SF6 pressure default											-		-	Free
Inhibit closing					•				•		-		-	Free
Open order													-	Free
Close order	•				•		•		•		-		-	Free
Phase VT fuse blown					•				•		-		-	Free
V0 VT fuse blown													-	Free
External positive active energy meter											-		-	Free
External negative active energy meter					•				•		-		-	Free
External positive reactive energy meter													-	Free
External negative reactive energy meter	•				•		•		•		-		-	Free
Racked out circuit breaker					•								•	Free
Switch A closed													-	Free
Switch A open													-	Free
Switch B closed													-	Free
Switch B open											-		•	Free
Closing-coil monitoring														Free

Logic input / output modules

MES120, MES120G, MES120H **14 input / 6 output module** Logic input / output assignment

Assignment table of logic Ix inputs by application Functions S80 S81 S82 S84 T81 T82 M87 M81 G87 G82 B80 B83 C86 As														
Functions	S80	S81	S82	S84	4 T81		M87		G87		B80	B83	C86	Assignmen
						T 87		M88		G88				
Inhibit recloser	•			-										Free
Inhibit thermal overload									•				•	Free
Switching of thermal settings				<u> </u>			•		•					Free
Blocking reception 1	•				•				•	•	•	•		Free
Blocking reception 2									•					Free
Buchholz trip														Free
Thermostat trip														Free
Pressure trip					-					•				Free
Thermistor trip								•	•	•				Free
Buchholz alarm					-			•		•				Free
Thermostat alarm														Free
Pressure alarm														Free
Thermistor alarm						-		-	-					Free
Rotor speed measurement									-	-				1104
Rotor rotation detection			-											Free
Motor re-acceleration														Free
Load shedding request								•						Free
Inhibit undercurrent							-	-						Free
Priority genset shutdown									-					Free
De-excitation														Free
Close enable (ANSI 25)									-	-		-		Free
Inhibit opposite-side remote control (local)									-					Free
Inhibit remote-control coupling (local)									-					Free
Coupling open									-					Free
Coupling closed					_							•		Free
Opposite side open					•				•	•	•	•		Free
Opposite side closed	•								•	•	•	•		Free
Selector set to Manual (ANSI 43)					•				•	•				Free
Selector set to Auto (ANSI 43)					•				•	•				Free
Selector set to Circuit breaker (ANSI 10)	•								•	•		•		Free
Selector set to Coupling (ANSI 10)									-					Free
Opposite-side circuit breaker disconnected									•					Free
Coupling circuit breaker disconnected									•					Free
Coupling close order				-	•				•		-			Free
Opposite-side voltage OK			-						•	•	•			Free
Inhibit closing of coupling		•	•						•	•	•			Free
Automatic closing order		-	-	-					•	•	-			Free
External closing order 1											•			Free
External closing order 2											•			Free
Additional phase voltage transformer fuse											-	-		Free
blown														
Additional V0 voltage transformer fuse blown														Free
Capacitor step 1 open													•	Free
Capacitor step 1 closed														Free
Capacitor step 2 open													•	Free
Capacitor step 2 closed													•	Free
Capacitor step 3 open													•	Free
Capacitor step 3 closed														Free
Capacitor step 4 open													•	Free
Capacitor step 4 closed													•	Free
Step 1 opening order													-	Free
Step 2 opening order													•	Free
Step 3 opening order													•	Free
Step 4 opening order													•	Free
Step 1 closing order													•	Free
Step 2 closing order													•	Free
Step 3 closing order													•	Free
Step 4 closing order													•	Free
Step 1 external trip													•	Free
Step 2 external trip													•	Free
Step 3 external trip														Free
Step 4 external trip													•	Free
Capacitor step 1 VAR control														Free
Capacitor step 2 VAR control													•	Free
Capacitor step 3 VAR control						1							•	Free
Capacitor step 4 VAR control													•	Free
External capacitor step control inhibit			1			1							•	Free
Manual capacitor step control		1	1			1							•	Free

Selection guide and connection

Selection guide

4 remote modules are proposed as options to enhance the Sepam base unit functions:

■ the number and type of remote modules compatible with the base unit depend on the Sepam application

■ the DSM303 remote advanced UMI module is only compatible with base units that do not have integrated advanced UMIs.

		Sepam s	eries 20	Sepa	m series 40	Sepam series 80				
			S2x, B2x	T2x, M2x	S4x	T4x, M4x, G4x	S8x, B8x	T8x, G8x	M8x, C8x	
8-2	Temperature sensor module	See page 163	0	1	0	2	0	2	2	
1	Analog output module	See page 165	1	1	1	1	1	1	1	
3	Remote advanced UMI module	See page 166	1	1	1	1	1	1	1	
5	Synchro-check module	See page 168	0	0	0	0	1	1	0	
	sets of interlinked modules / maxi nodules	mum number	1 set of 3 inte modules	erlinked	1 set of module	3 interlinked es	5 modules split between 2 sets of interlinked modules			

CAUTION

HAZARD OF NON-OPERATION

MET148 MSA141 DSM303 MCS025 Number of remot

The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

Example of inter-module linking on Sepam series 20.

Connection

Connection cords

Different combinations of modules may be connected using cords fitted with 2 black RJ45 connectors, which come in 3 lengths:

- CCA770: length = 0.6 m (2 ft)
- CCA772: length = 2 m (6.6 ft)
- CCA774: length = 4 m (13.1 ft).

The modules are linked by cords which provide the power supply and act as functional links with the Sepam unit (connector (D) to connector (Da), (Dd) to (Da), ...).

Rules on inter-module linking

Iinking of 3 modules maximum

■ DSM303 and MCS025 modules may only be connected at the end of the link.

Maximum advisable configurations

Sepam series 20 and Sepam series 40: just 1 set of interlinked modules

Base	Cord	Module 1	Cord	Module 2	Cord	Module 3
	D 0a		03 63		Ok D	
Series 20	CCA772	MSA141	CCA770	MET148-2	CCA774	DSM303
Series 40	CCA772	MSA141	CCA770	MET148-2	CCA774	DSM303
Series 40	CCA772	MSA141	CCA770	MET148-2	CCA772	MET148-2
Series 40	CCA772	MET148-2	CCA770	MET148-2	CCA774	DSM303

Sepam series 80: 2 sets of interlinked modules

Sepam series 80 has 2 connection ports for remote modules, D1 and D2. Modules may be connected to either port.

MET148-2 Temperature sensor module

MET148-2 Temperature sensor module.

Function

The MET148-2 module can be used to connect 8 temperature sensors (RTDs) of the same type:

- Pt100, Ni100 or Ni120 type RTDs, according to parameter setting
- 3-wire temperature sensors

A single module for each Sepam series 20 base unit, to be connected by one of the CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords
 2 modules for each Sepam series 40 or series 80 base unit, to be connected by CCA770 (0.6 or 2 ft), CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords
 The temperature measurement (e.g. in a transformer or motor winding) is utilized by the following protection functions:

- Thermal overload (to take ambient temperature into account)
- Temperature monitoring.

Characteristics

MET148-2 module				
Weight	0.2 kg (0.441 lb)			
Assembly	On symmetrical DIN rail			
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)			
Environmental characteristics	Same characteristics as Sepam base units			
Temperature sensors	Pt100	Ni100 / Ni120		
Isolation from earth	None	None		
Current injected in RTD	4 mA	4 mA		

(1) 70 mm (2.8 in) with CCA77x cord connected.

Description and dimensions

(A) Terminal block for RTDs 1 to 4.

(B) Terminal block for RTDs 5 to 8.

(Da) RJ45 connector to connect the module to the base unit with a CCA77x cord

(bd) RJ45 connector to link up the next remote module with a CCA77x cord (according to application).

 (\pm) Grounding/earthing terminal.

- Jumper for impedance matching with load resistor (Rc), to be set to:
 ➡, if the module is not the last interlinked module (default position)
 Rc, if the module is the last interlinked module.
- 2 Jumper used to select module number, to be set to:
 - MET1: 1st MET148-2 module, to measure temperatures T1 to T8 (default position)

■ MET2: 2nd MÉT148-2 module, to measure temperatures T9 to T16 (for Sepam series 40 and series 80 only).

MET148-2 Temperature sensor module

Connection

🗚 DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

- NEVER work alone.
- Check that the temperature sensors are isolated from dangerous voltages.
- Failure to follow these instructions will result in death or serious injury.

Connection of the earthing terminal

By tinned copper braid with cross-section ≥ 6 mm² (AWG 10) or cable with cross-section ≥ 2.5 mm² (AWG 12) and length ≤ 200 mm (7.9 in), fitted with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

Connection of RTDs to screw-type connectors

- 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)
- or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).
- Recommended cross-sections according to distance:
- Up to 100 m (330 ft)
- ≥ 1 mm² (AWG 18) ■ Up to 300 m (990 ft)
- ≥ 1.5 mm² (AWG 16)
- ≥ 2.5 mm² (AWG 12) ■ Up to 1 km (0.62 mi) Maximum distance between sensor and module: 1 km (0.62 mi).

Wiring precautions

■ It is preferable to use shielded cables.

The use of unshielded cables can cause measurement errors which vary in degree according to the level of surrounding electromagnetic disturbance

- Only connect the shielding at the MET148-2 end, in the shortest manner possible,
- to the corresponding terminals of connectors $(\ensuremath{\mathsf{A}})$ and $(\ensuremath{\mathsf{B}})$
- Do not connect the shielding at the RTD end.

Accuracy derating according to wiring

The error Dt is proportional to the length of the cable and inversely proportional to the cable cross-section:

 $\Delta t(\ ^{\circ}C) = 2 \times \frac{L(km)}{S(mm^{2})}$

- ±2.1°C/km for 0.93 mm² cross-section (AWG 18)
- ±1°C/km for 1.92 mm² cross-section (AWG 14).

MSA141 Analog output module

MSA141 analog output module.

Function

The MSA141 module converts one of the Sepam measurements into an analog signal:

- selection of the measurement to be converted by parameter setting
- 0-10 mA, 4-20 mA, 0-20 mA analog signal according to parameter setting
- scaling of the analog signal by setting minimum and maximum values of the converted measurement.

Example: the setting used to have phase current 1 as a 0-10 mA analog output with a dynamic range of 0 to 300 A is:

- minimum value = 0
- □ maximum value = 3000

■ a single module for each Sepam base unit, to be connected by one of the CCA770 (0.6m or 2 ft), CCA772 (2m or 6.6 ft) or CCA774 (4m or 13.1 ft) cords.

The analog output can also be remotely managed via the communication network.

Characteristics

MSA141 module							
Weight	0.2 kg (0.441 lb)						
Assembly	On symmetrical DIN rail						
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)						
Environmental characteristics	Same cha	racteristics as Se	pam base units				
Analog output							
Current	4-20 mA, 0-20 mA, 0-10 mA						
Scaling	Minimum	value					
(no data input checking)	Maximum	value					
Load impedance	< 600 Ω (i	ncluding wiring)					
Accuracy	0.5 %						
Measurements available	Unit	Series 20	Series 40	Series 80			
Phase and residual currents	0.1 A	•	•	•			
Phase-to-neutral and phase-to- phase voltages	1 V						
Frequency	0.01 Hz						
Thermal capacity used	1%						
Temperatures	1°C						
Active power	0.1 kW						
Reactive power	0.1 kvar						
Apparent power	0.1 kVA						
Power factor	0.01						
Remote setting via communication link							

(1) 70 mm (2.8 in) with CCA77x cord connected.

Description and dimensions

- (A) Terminal block for analog output.
- (Da) RJ45 socket to connect the module to the base unit with a CCA77x cord.
- (Dd) RJ45 socket to link up the next remote module with a CCA77x cord
- (according to application).
- (\pm) Earthing terminal.
- 1 Jumper for impedance matching with load resistor (Rc), to be set to:
 - R, if the module is not the last interlinked module (default position)
 - Rc, if the module is the last interlinked module.

Connection

Connection of the earthing terminal

By tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), equipped with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).

Connection of analog output to screw-type connector

- 1 wire with cross-section 0.2 to 2.5 mm² (AWG 24-12)
- or 2 wires with cross-section 0.2 to 1 mm² (AWG 24-18).

Wiring precautions

- It is preferable to use shielded cables
- Use tinned copper braid to connect the shielding at least at the MSA141 end.

DSM303 Remote advanced UMI module

DSM303 remote advanced UMI module.

Function

When associated with a Sepam that does not have its own advanced user-machine interface, the DSM303 offers all the functions available on a Sepam integrated advanced UMI.

It can be installed on the front panel of the cubicle in the most suitable operating location:

- reduced depth < 30 mm (1.2 in)
- a single module for each Sepam, to be connected by one of the CCA772 (2 m or 6.6 ft) or CCA774 (4 m or 13.1 ft) cords.

The module cannot be connected to Sepam units with integrated advanced UMIs.

Characteristics

DSM303 module	
Weight	0.3 kg (0.661 lb)
Assembly	Flush-mounted
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)
Environmental characteristics	Same characteristics as for Sepam base units

DSM303 Remote advanced UMI module

Description and dimensions

The module is simply flush-mounted and secured by its clips. No additional screw-type fastening is required.

- 1 Green LED: Sepam on.
- 2 Red LED:
- steadily on: module unavailable
- flashing: Sepam link unavailable.
- 3 9 yellow LEDs.
- 4 Label identifying the LEDs.
- 5 Graphic LCD screen.
- 6 Display of measurements.
- 7 Display of switchgear, network and machine diagnosis data.
- 8 Display of alarm messages.
- 9 Sepam reset (or confirm data entry).
- 10 Alarm acknowledgment and clearing (or move cursor up).
- 11 LED test (or move cursor down).
- 12 Access to protection settings.
- 13 Access to Sepam parameters.
- 14 Entry of 2 passwords.
- **15** PC connection port.
- **16** Mounting clip.
- **17** Gasket to ensure NEMA 12 tightness
 - (gasket supplied with the DSM303 module, to be installed if necessary).
- (Da) RJ45 lateral output connector to connect the module to the base unit with a CCA77x cord.

Cut-out for flush-mounting (mounting plate thickness < 3 mm or 0.12 in)

A CAUTION

HAZARD OF CUTS

Trim the edges of the cut-out plates to remove any jagged edges.

Failure to follow this instruction can cause serious injury.

mm in 98.5±0,5 3.88 98.5±0,5 3.88

Connection

(Da) RJ45 socket to connect the module to the base unit with a CCA77x cord. The DSM303 module is always the last interlinked remote module and it systematically ensures impedance matching by load resistor (Rc).

Schneider Flectric

MCS025 Synchro-check module

Function

The MCS025 module checks the voltages upstream and downstream of a circuit breaker to ensure safe closing (ANSI 25).

It checks the differences in amplitude, frequency and phase between the two measured voltages, taking into account dead line/busbar conditions. Three relay outputs may be used to send the close enable to several Sepam series 80 units.

The circuit-breaker control function of each Sepam series 80 unit will take this close enable into account.

The settings for the synchro-check function and the measurements carried out by the module may be accessed by the SFT2841 setting and operating software, similar to the other settings and measurements for the Sepam series 80.

The MCS025 module is supplied ready for operation with:

■ the CCA620 connector for connection of the relay outputs and the power supply

■ the CCT640 connector for voltage connection

■ the CCA785 cord for connection between the module and the Sepam series 80 base unit.

Characteristics

MCS025 module						
Weight		1.35 kg (2.98 lb)				
Assembly		With the AMT840	accessory			
Operating temperature		-25 °C to +70 °C (-13 °F to +158 °F)			
Environmental characteristics		Same characteris	tics as Sepam base uni	ts		
Voltage inputs						
Impédance d'entrée		> 100 kΩ				
Consommation		< 0.015 VA (VT 10	0 V)			
Tenue thermique permanente		240 V				
Surcharge 1 seconde		480 V				
Relay outputs						
Relay outputs O1 and O2	2					
Voltage	DC	24/48 V DC	127 V DC	220 V DC		
	AC (47.5 to 63 Hz)				100 à 240 V AC	
Continuous current		8 A	8A	8 A	8A	
Breaking capacity	Resistive load	8A/4A	0.7 A	0.3 A		
	Load L/R < 20 ms	6A/2A	0.5A	0.2 A		
	Load L/R < 40 ms	4A/1A	0.2 A	0.1A		
	Resistive load				8A	
	Load p.f. > 0.3				5A	
Making capacity		< 15 ms for 200 m	S			
Isolation of outputs from other other isolated groups		Enhanced				
Relay outputs O3 and O4	(O4 not used)					
Voltage	DC	24/48 V DC	127 V DC	220 V DC		
-	AC (47.5 to 63 Hz)				100 to 240 V AC	
Continuous current		2 A	2A	2 A	2A	
Breaking capacity	Load L/R < 20 ms	2A/1A	0.5A	0.15A		
	Load p.f. > 0.3				5A	
Isolation of outputs from other other isolated groups		Enhanced				
Power supply						
Voltage		24 to 250 V DC, -20 % / +10 %		110 to 240 V AC, -20 % / + 0 % 47.5 to 63 Hz		
Maximum consumption		6 W		9 VA		
Inrush current		< 10 A for 10 ms		< 15 A for one h	alfperiod	
Acceptable momentary outages	3	10 ms		10 ms		

MCS025 Synchro-check module

- 1 MCS025 module
- A CCA620 20-pin connector for:
 - auxiliary power supply
 - 4 relay outputs:
 - \Box 01, 02, 03: close enable.
 - □ O4: not used
- (B) CCT640 connector (phase-to-neutral or phase-tophase) for the two input voltages to be synchronized
- C RJ45 connector, not used
- (D) RJ45 connector for module connection to the Sepam series 80 base unit, either directly or via another remote module.
- 2 Two mounting clips
- 3 Two holding pins for the flush-mount position
- 4 CCA785 connection cord

MCS025 Synchro-check module

Dimensions

MCS025.

Assembly with AMT840 mounting plate

The MCS025 module should be mounted at the back of the compartment using the AMT840 mounting plate.

Connector	Туре	Reference	Wiring
A	Screw-type	CCA620	 Wiring with no fittings: 1 wire with maximum cross-section 0.2 to 2.5 mm² (> AWG 24-12) or 2 wires with cross-section 0.2 to 1 mm² (> AWG 24-16) stripped length: 8 to 10 mm (0.31 à 0.39 in) Wiring with fittings: recommended wiring with Schneider Electric fittings: DZ5CE015D for 1 wire 1.5 mm2 (AWG 16) DZ5CE025D for 1 wire 2.5 mm2 (AWG 12) AZ5DE010D for 2 x 1 mm² wires (AWG 18) tube length: 8.2 mm (0.32 in) stripped length: 8 mm (0.31 in)
В	Screw-type	CCT640	VT wiring: same as wiring of the CCA620 Earthing connection: by 4 mm (0.15 in) ring lug
0	Orange RJ45 connector		 CCA785, special prefabricated cord supplied with the MCS025 module: ■ orange RJ45 connector for connection to port D on the MCS025 module ■ black RJ45 connector for connection to the Sepam series 80 base unit, either directly or via another remote module.

Caractéristiques de raccordement

(1) Phase-to-phase or phase-to-neutral connection.

CAUTION

HAZARD OF NON-OPERATION The MCS025 module must ALWAYS be connected with the special CCA785 cord, supplied with the module and equipped with an orange RJ45 plug and a black RJ45 plug.

Failure to follow this instruction can cause equipment damage.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

■ Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Sepam 100 LD

Presentation

Sepam 100 LD.

Sepam 100 LD: front panel.

Sepam 100 LD is a high impedance differential relay. It provides restricted earth fault, busbar and machine protection.

Advantages

- stability with respect to external faults
- sensitivity to internal faults
- speed (typical response time: 15 ms to 5 ls)
- outputs with or without latching
- Iocal and remote acknowledgment
- high level of immunity to electromagnetic interference.

Description

- Sepam 100 LD is available in 4 versions:
- single-phase for restricted earth protection
- three-phase for busbar and machine protection
- 50 or 60 Hz
- 50 Hz single-phase: 100 LD X 51
- 50 Hz three-phase: 100 LD X 53
- 60 Hz single-phase: 100 LD X 61
- 60 Hz three-phase: 100 LD X 63.
- The front of Sepam 100 LD includes:
- 2 signal lamps:
- power "on" indicator
- □ latching "trip" indicator indicating output relay tripping
- protection setting dial
- "reset" button for acknowledging output relays and the "trip" indicator. When the button is activated, the "trip" indicator undergoes a lamp test.
- The back of Sepam 100 LD includes:
- input/output connectors:
- an 8-pin connector for toroid inputs and remote acknowledgment
- □ an 8-pin connector for "tripping" outputs and power supply
- □ a 4-pin connector for "tripping" outputs
- a microswitch used to configure the relay "with" or "without" latching. Sepam 100 LD has:
- 1 or 3 current inputs with a common point according to whether it is a single-phase or three-phase version
- a logic input (isolated) for remote acknowledgment
- "tripping" output relay with 5 contacts (3 normally open contacts and 2 normally closed contacts).
- Sepam 100 LD operates in 5 voltage ranges (please specify when ordering):
- 24-30 V DC
- 48-125 V DC
- 220-250 V DC
- 100-127 V AC
- 220-240 V AC.

Sepam 100 LD is associated with a stabilization plate (or 3 plates) with variable resistance, enabling operation with 1 A or 5 A transformers.

Parameter setting

Microswitch SW1, accessible on the back of Sepam 100 LD, is used to choose "with" or "without" latching.

With latching:

Sepam 100 LD High impedance differential protection

Settings

Settings	Setting values				
Setting current Is	5 to 40 % In by steps of 5 % In				
	40 to 80 % In by steps of 10) % In			
	The dial on the front of the device is used for setting				
Stabilizing resistor plate	Rs = 0 Ω to 68 Ω	P = 280 W			
	Rs = 0 Ω to 150 Ω	P = 280 W			
	Rs = 0 Ω to 270 Ω	P = 280 W			
	Rs = 0 Ω to 470 Ω	P = 180 W			
	Rs = 0 Ω to 680 Ω	P = 180 W			
Accuracy / performance					
Setting	±5 %				
Pickup (%)	93 % ±5 %				
Response time	≤ 10 ms for I ≥ 10 ls				
	≤ 16 ms for l ≥ 5 ls				
	≤25 ms for I≥2 Is				
Memory time	≤ 30 ms				

Sepam 100 LD

Sensors and surge limiters

Maximum external short-circuit

Protection setting (A)

CT magnetizing currents

CT knee-point voltages

Vk = min (Vk1, ..., Vkp)

Current in RI

current in CT secondary winding

Specifying the sensors

Current transformers

To ensure the stability and sensitivity of Sepam 100 LD, the stabilization resistor and characteristics of the current transformers (CTs) are calculated as follows.

Choice of current transformers

■ all the CTs must have the same transformation ratio n

the knee-point voltages are chosen so that:

Vk > 2 x (R + Rf) x icc

Choice of stabilizing resistor

 $\frac{\mathbf{R} + \mathbf{R}\mathbf{f}}{\mathbf{Is}} \times \mathbf{icc} < \mathbf{Rs} \le \frac{\mathbf{Vk}}{\mathbf{2} \times \mathbf{Is}}$

Surge limiter

The approximate voltage developed by a CT in the event of an internal fault is: $V = 2 \sqrt{22 \times Vk \times (icc \times (R + Rf + Rs) - Vk)}$

If the value exceeds 3 kV, it is necessary to add an RI surge limiter in parallel with the relay and stabilizing resistor in order to protect the CTs (see: surge limiter).

Protection sensitivity

The CTs consume magnetizing current and the surge limiter, when installed, creates fault current. The minimum residual primary current detected by the protection is therefore:

 $Id = n x (i_m 1 + ... i_m p + if + is)$

with

■ i_m1, ...imp are read on the CT magnetization curves at V = Rs x is
 ■ if is the total earth leakage current of the surge limiter for Vs = Rs x is, i.e. the sum of the earth leakage currents of the N limiter units installed in parallel: if = N x ib

Surge limiter

(see: surge limiter).

If the calculations have shown that it is necessary to install a surge limiter in parallel with the relay and Rs to protect the CTs, it is determined as follows.

Choice

Standard references

the surge limiters on offer consist of limiter blocks which are independent of each other. Each block accepts a maximum current of 40 A RMS for 1 s. By installing the blocks in parallel, it is possible to obtain the appropriate limiter for the application.
 there are two standard references:

□ a single module, comprising one block

a triple module, comprising three independent blocks which are aligned.

Calculation of the number of blocks per phase

According to i, max. RMS short-circuit current in the secondary winding of a CT, the number of blocks required per phase is calculated: $N \ge \frac{1}{40}$

- for a three-phase relay, N triple modules should be ordered
- for a single-phase relay, N blocks, made up of triple and single modules.

Earth leakage current

A limiter block accepts a max. steady state voltage of 325 V RMS and presents an earth fault current lb:

icc:

is:

if:

i_m1, i_mp: Vk1, Vkp:

Sepam 100 LD

Description and connection

Rear panel

(A): 8-pin CCA608 connector

(toroid and remote reloading inputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.

1A: 8-pin CCA608 connector

(power supply and "annunciation and tripping" outputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.

(B): CCA604 connector ("annunciation" outputs); screw terminal wiring with 0.6 to 2.5 mm² wires, each terminal being capable of receiving two 1.5 mm² wires.

Note: only 0A1 and 0A2 terminals are available in the single-phase version.

Terminal identification

Each terminal is identified by 3 characters.

: ground terminal

Connection of the tabilization plate

Connection of CTs and surge limiters:

- 5 A rating: between terminals 1-2 and 3-4
- 1 A rating: between terminals 1-2 and 5-6
- items 1 to 6: clamp screw connections for 6 mm2 wire
- items 1, 2: secondary of CSH30 core balance CT, connected to (A).
- Wire to be used:
- sheathed, shielded wire
- min. cross-section 0.93 mm2 (AWG 18) (max. 2.5 mm²)
- resistance load per unit length < 100 mW/m
- min. dielectric strength: 1000 V
- max. length: 2 m.

Connect the wire shielding in the shortest way possible to (A).

The shielding is grounded in Sepam 100 LD. Do not ground the wire by any other means.

Press the wire against the metal frame of the cubicle to improve immunity to radiated interference.

Other modules

Sepam 100 LD

Description and connection

Example 1 (N = 2 blocks per phase): 2 triple modules for a three-phase relay.

Connection of the surge limiter

■ single unit = outputs with screw M10 ■ triple unit = outputs with holes ø 10.4 (see "installation").

Example 2 (N = 2 blocks per phase): 2 single modules for a single-phase relay.

DE 88229

Example 3 (N = 4 blocks per phase 1 triple module + 1 single module for a single-phase relay.

Restricted earth protection (single-phase) 1 A CT

Busbar protection (three-phase) 5 A CT - with surge limiters

Note: = correspondence between primary and secondary connections (e.g. P1, S1).

Sepam 100 LD Characteristics and dimensions

Analog inputs (with	h plate)						
Constant current		10 In					
3 sec. current		500 In					
Logic input (remot	e reloading input)						
Voltage		24/250 V DC	127/240 V /	AC			
Maximum power consu	mption	3.5 W	3.7 VA				
Logic outputs							
Constant current		8A					
Voltage		24/30 V DC	48 V DC		127 V DC/V A	4C	220 V DC/V A
Breaking capacity	Resistive dc load	7A	4 A		0.7 A		0.3A
(contact 01)	Resistive ac load				8 A		8 A
Breaking capacity	Resistive dc load	3.4 A	2 A		0.3 A		0.15A
(contacts 02 to 05)	Resistive ac load				4 A		4 A
Power supply							
	Range	Consumption when inactiv	/e	Max. consumpt	tion	Inrush current	
24/30 V DC	±20 %	2.5 W		6 W		< 10 A for 10 ms	
48/125 V DC	±20 %	3 W		6 W		< 10 A for 10 ms	;
220/250 V DC	-20 % +10 %	4 W		8 W		< 10 A for 10 ms	;
100/127 V AC	-20 % +10 %	6 VA		10 VA		< 15 A for 10 ms	;
220/240 V AC	-20 % +10 %	12 VA		16 VA		< 15 A for 10 ms	
Operating frequency		47.5 à 63 Hz					
Environmental	characteristics						
Climatic							
Operation		IEC 60068-2				-5 $^\circ\text{C}$ to 55 $^\circ\text{C}$	
Storage		IEC 60068-2				-25 °C to 70 °C	
Damp heat		IEC 60068-2				95 % to 40 °C	
Influence of corrosion		IEC 60654-4 Class I					
Mechanical							
Degree of protection		IEC 60529		IP 41		On front	
Vibrations		IEC 60255-21-1		Class I			
Shocks and bumps		IEC 60255-21-2		Class I			
Earthquakes		IEC 60255-21-3		Class I			
Fire		IEC 60695-2-1				Glow wire	
Electrical insulatio	n						
Power frequency IEC 60255-5		IEC 60255-5				2 kV - 1 mn	
1.2/50 µs impulse wave	e	IEC 60255-5				5 kV	
Electromagnetic co	ompatibility						
Immunity to radiation		IEC 60255-22-3		Class X		30 V/m	
Electrostatic sicharges		IEC 60255-22-2		Class III			
Single-direction transie	nts	IEC 61000-4-5					
Damped 1 MHz wave		IEC 60255-22-1		Class III			
5 ns fast transients		IEC 60255-22-4		Class IV			

Dimensions

Weight: 1.9 kg

■ 86 maxi → 3.39 max.

Sepam 100 MI

Presentation

Front of Sepam 100MI-X03.

Device closed.

Disconnector.

Circuit breaker.

Function

The Sepam 100MI range includes 14 indication and local control modules:

designed for control cubicles or cabinets
 which may be used individually or together with Sepam 2000 and Sepam series 20/40/80 units.

Each module is suited to a particular indication and local control application. The right unit is chosen from the 14 types of Sepam 100MI according to:

- cubicle single-line diagram
- devices whose positions are to be indicated
- required local control functions.

The 14 types of Sepam 100MI are presented in detail in the pages which follow.

Advantages

■ includes all the animated mimic elements for viewing breaking and disconnection device status

- compact size and easy installation
- reduced cabling
- standardization and consistency with Sepam range.

Description

The front of Sepam 100MI includes the following, according to type:

- a mimic diagram showing the cubicle single-line diagram, with devices symbolized
- red and green signal lamp blocks to indicate the position of each device:
- red vertical bar showing device closed
- □ green horizontal bar showing device open
- local or remote control selector switch with lock
- circuit breaker open control pushbutton (KD2), active in local or remote mode
- circuit breaker close control pushbutton (KD1), active in local mode only

■ 2 circuit breaker connect (KS1) and disconnect (KS2) control pushbuttons, active in local or remote mode.

There is a 21-pin connector on the back of Sepam 100MI for the connection of:

- supply voltage
- device position indication inputs
- circuit breaker control (open/close and disconnect) outputs.

Sepam 100MI operates with 2 power supply ranges (to be indicated in order):

- 24/30 V AC/DC
- 48/127 V AC/DC.

Note: In the Sepam 100MI mimics on the pages which follow, the position indicators of each device are identified as follows:

- LVi: green indicator showing device number "i " in open position.
- LRI: red indicator showing device number "i" in closed position. These markings do no appear on the front of the device.

Sepam 100 MI

Block and connection diagrams

Sepam 100 MI

Block and connection diagrams

Sepam 100MI-X16 and Sepam 100MI-X18 Sepam 100MI-X18 Connection

Sepam 100MI-X16 mimic diagram

-

DE88249

L

0

Sepam 100MI-X03 Sepam 100MI-X03 mimic diagram

Sepam 100MI-X22 Sepam 100MI-X22 mimic diagram

Connection E88374 2 Common 3 Remote Sepam control enable Ц КD1 16 CB closing Ð Ь КD2 CB tripping Common кsı КS1 7 Plug in control Ν KS2 5 Plug out control E

Connection

Sepam 100 MI

Block and connection diagrams

Sepam 100MI-X14

Sepam 100MI-X14 mimic diagram

Sepam 100MI-X15 Sepam 100MI-X15 mimic diagram

Sepam 100MI-X10, Sepam 100MI-X11 and Sepam 100MI-X12

Sepam 100MI-X10 mimic diagram

DE88258

I

ο

-

Sepam 100MI-X11 mimic diagram

Sepam 100MI-X12 Connection mimic diagram

Sepam 100 MI Characteristics and dimensions

Electrical cha	aracteristics					
Logic inputs						
Voltage		24/30 V	48/127	V		
Max. consumption p	erinput	35 mA	34 mA	-		
Logic outputs (r	•					
Voltage	ciuyo,	24/30 V	48/127	V		
Permissible rated cu	rrent	8A	-			
Breaking capacity	DC resistive load	4A	0,3 A			
5 - 1 - 5	AC resistive load	8A	8A			
Number of on-load o		10000	10000			
Power supply						
Auxiliary power source DC or AC current (50 or 60 Hz)		24 to 30 V, -20 % 48 to 127 V, -20 %	% +10 %			
Consumption		24 to 30 V: 7.7 VA max. (at 33 V) 48 V: 4 VA 110 V: 18 VA				
Environment	al characterist	tics				
Climatic						
Operation		IEC 60068-2		-10 °C to +70 °C		
Storage		IEC 60068-2		-25 °C to +70 °C		
Damp heat		IEC 60068-2		95 % to 40 °C		
Mechanical						
Degree of protection		IEC 60529	IP51	Front plate		
Vibrations		IEC 60255-21-1	Class I			
Shocks		IEC 60255-21-2	Class I			
Seismic tests		IEC 60255-21-3	Class I			
Fire		NFC 20455	Glow wire 650	°C		
Dielectric						
Power frequency		IEC 60255-4 ⁽¹⁾		2 kV - 1 mn		
1.2/50 µs impulse wa	ave	IEC 60255-4 ⁽¹⁾		5 kV		
Electromagnetic	:					
Radiation		IEC 60255-22-3	Class X	30 V/m		
Electrostatic dischar	ge	IEC 60255-22-2	Class III			
Damped 1 MHz wav	е	IEC 60255-22-1	Class III			
5 ns fast transients		IEC 60255-22-4	Class IV			
(1) Published in 197	8 and amended in 197	' 9.				

The "CE" marking on our products guarantees their conformity to European directives.

Dimensions

Cut out

DE88381

202 7.95 <u>86 max.</u> 3.39 max Mounting close-up

Selection guide

There are 2 types of Sepam communication accessories:

■ communication interfaces, which are essential for connecting Sepam to the communication network

■ converters and oth er accessories, as options, which are used for complete implementation of the communication network.

Communication-interface selection guide

		ACE949-2	ACE959	ACE937	ACE9	69TP-2	ACE9	69FO-2	ACE850TP	ACE850FC
Type of netwo	ork									
		S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN or E-LAN ⁽¹⁾	S-LAN	E-LAN	S-LAN	E-LAN	S-LAN and E-LAN	S-LAN and E-LAN
Protocol										
Modbus RTU				•	(3)		(3)			
DNP3					(3)		(3)			
IEC 60870-5-103					(3)		(3)			
Modbus TCP/IP										
IEC 61850										•
Physical inte	rface									
RS 485	2-wire	•						•		
	4-wire		•							
Fiber optic ST	Star									
	Ring						(2)			
10/100 base Tx	2 ports									
100 base Fx	2 ports									-
Power supply	/									
DC		Provided by	Provided by	Provided by	24 to 250	V	24 to 250	V	24 to 250 V	24 to 250 V
AC		Sepam	Sepam	Sepam	110 to 24	0 V	110 to 24	0 V	110 to 240 V	110 to 240 V
See details		Catalogue page 186	Catalogue page 187	Catalogue page 188	Catalog page 18		Catalog page 18		Catalogue page 194	Catalogue page 194

(1) Only one connection possible, S-LAN or E-LAN.

(2) Except with the Modbus protocol.
 (3) Not simultaneously (1 protocol per application).

Converter selection guide

	ACE909-2	ACE919CA	ACE919CC	EGX100	EGX300	EC1850
Converter						
Physical interface	1 port RS 232	1 port RS 485 port 2-wire	1 port RS 485 port 2-wire	1 Ethernet port 10/100 base T	1 Ethernet port 10/100 base T	1 Ethernet port 10/100 base T
Modbus RTU	(1)	■ ⁽¹⁾	■ ⁽¹⁾			
IEC 60870-5-103	■ ⁽¹⁾	■ ⁽¹⁾	(1)			
DNP3	(1)	(1)	(1)			
Modbus TCP/IP				•	•	
IEC 61850						•
To Sepam					·	
Physical interface	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire	1 port RS 485 2-wire or 4-wire	1 port RS 485 2-wire or 4-wire	1 port RS 485 2-wire or 4-wire
Distributed power supply RS 485	•	•	•			
Modbus RTU	(1)	■ ⁽¹⁾	(1)	•	•	•
IEC 60870-5-103	(1)	■ ⁽¹⁾	(1)			
DNP3	(1)	(1)	(1)			
Alimentation					·	
DC			24 to 48 V	24 V	24 V	24 V
AC	110 to 220 V AC	110 to 220 V AC				
See details	Catalogue page 198	Catalogue page 200	Catalogue page 200	Catalogue page 206	Catalogue page 207	Catalogue page 202

(1) The supervisor protocol is the same as the Sepam protocol.

Note: all these interfaces accept the E-LAN protocol.

Communication interface connection

CCA612 connection cord

Function

The CCA612 prefabricated cord is used to connect ACE942-2, ACE959, ACE937, ACE969TP-2 and ACE969FO-2 communication interfaces:

to the white communication port C on a Sepam series 20 or series 40 base unit, or
 to the white communication port C or C on a Sepam series 80 base unit.

Characteristics

- Length = 3 m (9.8 ft)
- Fitted with 2 green RJ45 plugs.

Sepam series 20 and Sepam series 40: 1 communication port.

Sepam series 80 : 2 communication ports.

CAUTION

- HAZARD OF DEFECTIVE COMMUNICATION
- Never use both communication ports (2) and (F) on
- a Sepam series 80 at the same time. ■ The only communication ports that can be used
- simultaneously on a Sepam series 80 unit are ports(C1) and (C2) or ports(C1) and (F).

Failure to follow this instruction can result in equipment damage.

CCA614 connection cord

Function

The CCA614 prefabricated cord can be used to connect ACE850TP and ACE850FO communication interfaces:

- to the white communication port ⓒ on a Sepam series 40 base unit, or
- to the blue communication port (F) on a Sepam series 80 base unit.

Characteristics

- Length = 3 m (9.8 ft)
- Fitted with 2 blue RJ45 connectors
- Minimum curvature radius = 50 mm (1.97 in)

Sepam series 40

Communication interface connection

Connection to the communication network

RS485 network for ACE949-2, ACE959 and ACE969TP-2 interfaces

RS 485 network cable	2-wire	2-wire		
RS 485 medium	1 shielded twisted pair	2 shielded twisted pairs		
Distributed power supply (1)	1 shielded twisted pair	1 shielded twisted pair		
Shielding	Tinned copper braid, covera	ige > 65 %		
Characteristic impedance	120 Ω			
Gauge	AWG 24			
Resistance per unit length	< 100 Ω/km (62.1Ω/mi)			
Capacitance between conductors	< 60 pF/m (18.3 pF/ft)			
Capacitance between conductor and shielding	< 100 pF/m (30.5 pF/ft)			
Maximum length	1300 m (4270 ft)			

Fiber-optic network for ACE937 and ACE969FO-2 interfaces

Fiber optic						
Fiber type		Graded-index multimode silica				
Wavelength		820 nm (invisible infra-red)				
Type of connector	r	ST (BFOC bayonet fiber optic connector)				
Fiber optic	Numerical	Maximum Minimum optical Maximum				
diameter	aperture	attenuation power available fiber leng				
(µm)	(NA)	(dBm/km)				
50/125	0,2	2,7	5,6	700 m (2300 ft)		
62,5/125	0,275	3,2	9,4	1800 m (5900 ft)		
100/140	0,3	4 14,9 2800 m (92				
200 (HCS)	0,37	6	19,2	2600 m (8500 ft)		

Fiber optic Ethernet network for the ACE850FO communication interface

Fiber op	tic commu	inication po	ort			
Fiber type		Multimode				
Wavelength		1300 nm				
Type of conn	ector	SC				
Fiber optic diameter (µm)	Minimum optical power TX (dBm)	Maximum optical power TX (dBm)	Sensitivity RX (dBm)	Saturation RX (dBm)	Maximum distance	
50/125	-22,5	-14	-33,9	-14	2 km (1,24 mi)	
62,5/125	-19	-14	-33,9	-14	2 km (1,24 mi)	

Wired Ethernet network for the ACE850TP communication interface

Wired communication port						
Type of connector	Data	Medium	Maximum distance			
RJ45		Cat 5 STP or FTP or SFTP	100 m (328 ft)			

ACE949-2 2-wire RS 485 network interface

ACE949-2 2-wire RS 485 network connection interface.

(1) 70 mm (2.8 in) with CCA612 cord connected.

Function

- The ACE949-2 interface performs 2 functions:
- Electrical interface between Sepam and a 2-wire RS 485 communication network
- Main network cable branching box for the connection of a Sepam with
- a CCA612 cord.

Characteristics

ACE949-2 module					
Weight		0.1 kg (0.22 lb)			
Assembly		On symmetrical DIN rail			
Operating temperature		-25°C to +70°C (-13°F to	+158°F)		
Environmental characteristics		Same characteristics as S	Sepam base units		
2-wire RS 485 electrical		interface			
Standard		EIA 2-wire RS 485 differe	ntial		
Distributed power supply		External, 12 V DC or 24 V DC ±10%			
Power consumption		16 mA in receiving mode			
		40 mA maximum in sending mode			
Maximum length o	f 2-w	ire RS 485 network			
with standard cabl	е				
Number of	Maxi	mum length with	Maximum length with		
Sepam units	12 V	DC power supply	24 V DC power supply		
5	320 m (1000 ft)		1000 m (3300 ft)		
10	180 m (590 ft)		750 m (2500 ft)		
20	160 m	(520 ft)	450 m (1500 ft)		
25	125 m	(410 ft)	375 m (1200 ft)		

Description and dimensions

- (A) and (B) Terminal blocks for network cable
- CRJ45 socket to connect the interface to the base unit with a CCA612 cord
- (+) Grounding/earthing terminal

2

- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
 - Jumper for RS 485 network line-end impedance matching with load resistor (Rc = 150Ω), to be set to:
 - \$\overline{C}\$, if the module is not at one end of the network (default position)
 Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection

- Connection of network cable to screw-type terminal blocks (A) and (B)
- Connection of the earthing terminal by tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), fitted with a 4 mm (0.16 in) ring lug.
- Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in).
- The interfaces are fitted with clamps to hold the network cable and recover shielding at the incoming and outgoing points of the network cable:
- □ the network cable must be stripped
- $\hfill\square$ the cable shielding braid must be around and in contact with the clamp
- The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings)
- The interfaces are to be supplied with 12 V DC or 24 V DC.

ACE959 4-wire RS 485 network interface

ACE959 4-wire RS 485 network connection interface.

(1) 70 mm (2.8 in) with CCA612 cord connected.

(1) Distributed power supply with separate wiring or included in the shielded cable (3 pairs).

(2) Terminal block for connection of the distributed power supply module.

Function

The ACE959 interface performs 2 functions:

■ Electrical interface between Sepam and a 4-wire RS 485 communication network

- Main network cable branching box for the connection of a Sepam with a CCA612
- cord

Characteristics

ACE959 module	
Weight	0.2 kg (0.441 lb)
Assembly	On symmetrical DIN rail
Operating temperature	-25°C to +70°C (-13°F to +158°F)
Environmental characteristics	Same characteristics as Sepam base units
4-wire RS 485 electrical inte	rface
Standard	EIA4-wire RS 485 differential
Distributed power supply	External, 12 V DC or 24 V DC ±10%
Power consumption	16 mA in receiving mode
	40 mA maximum in sending mode

Maximum length of 4-wire RS 485 network

Number of Sepam units	Maximum length with 12 V DC power supply	Maximum length with 24 V DC power supply
5	320 m (1000 ft)	1000 m (3300 ft)
10	180 m (590 ft)	750 m (2500 ft)
20	160 m (520 ft)	450 m (1500 ft)
25	125 m (410 ft)	375 m (1200 ft)

Description and dimensions

- (A) and (B) Terminal blocks for network cable
- C RJ45 socket to connect the interface to the base unit with a CCA612 cord
- D Terminal block for a separate auxiliary power supply (12 V DC or 24 V DC)
- Grounding/earthing terminal
- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
- 2 Jumper for 4-wire RS 485 network line-end impedance matching with load resistor (Rc = 150Ω), to be set to:
 - 🔆, if the module is not at one end of the network (default position)
 - Rc, if the module is at one end of the network.
- 3 Network cable clamps (inner diameter of clamp = 6 mm or 0.24 in).

Connection

■ Connection of network cable to screw-type terminal blocks (A) and (B)

■ Connection of the earthing terminal by tinned copper braid with cross-section $\ge 6 \text{ mm}^2$ (AWG 10) or cable with cross-section $\ge 2.5 \text{ mm}^2$ (AWG 12) and length $\le 200 \text{ mm}$ (7.9 in), fitted with a 4 mm (0.16 in) ring lug.

Check the tightness (maximum tightening torque 2.2 Nm or 19.5 lb-in). The interfaces are fitted with clamps to hold the network cable and recover

- shielding at the incoming and outgoing points of the network cable and recover shielding at the incoming and outgoing points of the network cable:
- the network cable must be stripped
 the cable shielding braid must be around and in contact with the clamp
- The interface is to be connected to connector (C) on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings)
- The interfaces are to be supplied with 12 V DC or 24 V DC

■ The ACE959 can be connected to a separate distributed power supply (not included in shielded cable). Terminal block (D) is used to connect the distributed power supply module.

ACE937 Fiber optic interface

ACE937 fiber optic connection interface.

HAZARD OF BLINDING

Never look directly into the end of the fiber optic. Failure to follow this instruction can cause serious injury.

Function

The ACE937 interface is used to connect Sepam to a fiber optic communication star system.

This remote module is connected to the Sepam base unit by a CCA612 cord.

Characteristics

ACE937 m	odule						
Weight		0.1 kg (0.22 lb	0.1 kg (0.22 lb)				
Assembly		On symmetric	al DIN rail				
Power supply		Supplied by S	epam				
Operating temperating	ature	-25°C to +70°	C (-13°F to +158°F)				
Environmental cha	aracteristics	Same characte	eristics as Sepam base ur	iits			
Fiber optic	tic interface						
Fiber type		Graded-index	Graded-index multimode silica				
Wavelength		820 nm (invisi	ble infra-red)				
Type of connector		ST (BFOC bay	onet fiber optic connecto	et fiber optic connector)			
Fiber optic diameter (µm)	Numerical aperture (NA)	Maximum ttenuation (dBm/km)	ttenuation power available				
50/125	0.2	2.7	5.6	700 m (2300 ft)			
62.5/125	0.275	3.2	9.4	1800 m (5900 ft)			
100/140	0.3	4 14.9 2800 m (9200					
200 (HCS)	0.37	6	19.2	2600 m (8500 ft)			

Maximum length calculated with:

Minimum optical power available

Maximum fiber attenuation

■ Losses in 2 ST connectors: 0.6 dBm

■ Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi)

Description and dimensions

(C) RJ45 socket to connect the interface to the base unit with a CCA612 cord.

- 1 Link activity LED, flashes when communication is active (sending or receiving in progress).
 - Rx, female ST type connector (Sepam receiving).
- **3** Tx, female ST type connector (Sepam sending).

(1) 70 mm (2.8 in) with CCA612 cord connected.

Schneider

Connection

■ The sending and receiving fiber optic fibers must be equipped with male ST type connectors

■ Fiber optics screw-locked to Rx and Tx connectors.

The interface is to be connected to connector \bigcirc on the base unit using a CCA612 cord (length = 3 m or 9.8 ft, green fittings).

ACE969TP-2 and ACE969FO-2 Network interfaces

ACE969TP-2 communication interface.

ACE969TP-2 and ACE969FO-2

Function

The ACE969 multi-protocol communication interfaces are for Sepam series 20, Sepam series 40 and Sepam series 80.

They have two communication ports to connect a Sepam to two independent communication networks:

■ The S-LAN (Supervisory Local Area Network) port is used to connect Sepam to a communication network dedicated to supervision, using one of the three following protocols:

. □ IEC 60870-5-103

DNP3

□ Modbus RTU.

The communication protocol is selected at the time of Sepam parameter setting. The E-LAN (Engineering Local Area Network) port, reserved for Sepam remote parameter setting and operation using the SFT2841 software.

There are two versions of the ACE969 interfaces, which are identical except for the S-LAN port:

■ ACE969TP-2 (Twisted Pair), for connection to an S-LAN network using a 2-wire RS 485 serial link

■ ACE969FO-2 (Fiber Optic), for connection to an S-LAN network using a fiber-optic connection (star or ring).

The E-LAN port is always a 2-wire RS485 type port.

ACE969FO-2 communication interface.

Λ

ACE969TP-2 and ACE969FO-2 network interfaces

Characteristics

ACE969TP-	2 and ACE96	9FO-2 modul	e			
Technical char	acteristics					
Weight		0.285 kg (0.628 lb)				
Assembly		On symmetrical D	IN rail			
Operating temperation	ture	-25°C to +70°C (-13°F to +158°F)				
Environmental cha	racteristics	Same characteris	tics as Sep	oam base	units	
Power supply						
Voltage		24 to 250 V DC		110 to 24	40 V AC	
Range		-20%/+10%		-20%/+1	10%	
Maximum consump	otion	2 W		3 VA		
Inrush current		< 10 A 100 µs				
Acceptable ripple content 12%						
Acceptable momentary outages 20 ms						
2-wire RS 485 communication ports						
Electrical inter	face					
Standard		EIA 2-wire RS 485	EIA 2-wire RS 485 differential			
Distributed power s	upply	ACE969-2 not required (built-in)				
Fiber optic	communicati	ion port				
Fiber optic inte	erface					
Fiber type		Graded-index multimode silica				
Wavelength		820 nm (invisible infra-red)				
Type of connector		ST (BFOC bayonet fiber optic connector)				
Maximum leng	th of fiber optic	network				
Fiber diameter (µm)	Numerical aperture (NA)	Attenuation (dBm/km)	Minimur optical p availabl (dBm)	ower	Maximum fiber length	
50/125	0.2	2.7	5.6		700 m (2300 ft)	
62.5/125	0.275	3.2	9.4		1800 m (5900 ft)	
100/140	0.3	4	14.9		2800 m (9200 ft)	
200 (HCS)	0.37	6	19.2		2600 m (8500 ft)	
Maximum length	calculated with:					

Minimum optical power available

Maximum fiber attenuation

■ Losses in 2 ST connectors: 0.6 dBm

■ Optical power margin: 3 dBm (according to IEC 60870 standard).

Example for a 62.5/125 µm fiber

Lmax = (9.4 - 3 - 0.6)/3.2 = 1.8 km (1.12 mi).

Dimensions

ACE969TP-2 and ACE969FO-2 network interfaces

Description

ACE969-2 communication interfaces ACE969FO-2

ACE969TP-2

- 1 Grounding/earthing terminal using supplied braid
- 2 Power-supply terminal block
- 3 RJ45 connector to connect the interface to the base
- unit with a CCA612 cord 4 Green LED: ACE969-2 energized
- 5 Red LED: ACE969-2 interface status
- LED off = ACE969-2 set up and communication operational ■ LED flashing = ACE969-2 not set up or setup incorrect
- LED remains on = ACE969-2 has faulted
- 6 Service connector: reserved for software upgrades 7 E-LAN 2-wire RS485 communication port (ACE969TP-2 and ACE969FO-2)
- 8 S-LAN 2-wire RS485 communication port (ACE969TP-2)
- 9 S-LAN fiber-optic communication port (ACE969FO-2).
- 1 Draw-out terminal block, with two rows of connections to the RS485 2-wire network: 2 black terminals: connection of RS485 twistedpair (2 wires)

■ 2 green terminals: connection of twisted-pair for distributed power supply

2 Indication LEDs:

1 Indication LEDs:

- flashing Tx LED: Sepam sending
- flashing Rx LED: Sepam receiving.
- 3 Jumper for RS485 network line-end impedance matching with load resistor (Rc = 150Ω), to be set to: ■ R¢, if the interface is not at the line end (default position)
 - Rc, if the interface is at the line end.

2-wire RS485 communication ports

S-LAN port (ACE969TP)

E-LAN port (ACE969TP or ACE969FO)

Fiber-optic communication port

- S-LAN port (ACE969FO)
- flashing Tx LED: Sepam sending
- flashing Rx LED: Sepam receiving.
- 2 Rx, female ST-type connector (Sepam receiving)
- 3 Tx, female ST-type connector (Sepam sending).

191

Ą

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

Power supply and Sepam

- The ACE969-2 interface connects to connector C on the Sepam base unit using
- a CCA612 cord (length = 3 m or 9.84 ft, white RJ45 fittings)
- The ACE969-2 interface must be supplied with 24 to 250 V DC or 110 to 240 V AC.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

■ Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the protective earth and to the functional earth.
- Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Communication interfaces

ACE969TP-2 and ACE969FO-2 network interfaces

Connection

Power supply V+V. 2-wire RS 485 DE88386 networks A/A'B/B' (<u>†</u> -LAN (B) (A) (.) (V-) (V-E-LAN 1 (B) 2 (A) (.) (V-) (V+) V+ V-A/A'B/B

If ACE969TP and ACE969TP-2 are used together, the external power supply is required.

If ACE969TP-2 is used alone, the external power supply is not required, the V- connectors on the modules must be interconnected.

2-wire RS 485 communication ports (S-LAN or E-LAN)

- Connection of the RS 485 twisted pair (S-LAN or E-LAN) to terminals A and B.
- In case of ACE 969TP wired with ACE969TP-2:
- \Box connection of twisted pair for distributed power supply to terminals 5(V+) et 4(V-).
- In case of ACE969TP-2 only:
- □ connexion only on the terminal 4(V-) (ground continuity)
- □ no need of external power supply.
- The cable shields must be connected to the terminals marked 3(.) on the connection terminal blocks.
- Connection terminal blocks.

■ Terminal marked 3(.) are linked by an internal connection to the earthing terminals of the ACETP-2 interface (protective an functional earthing): le the shielding of the RS 485 cables is earthed as well.

■ On the ACE960TP-2 interface, the cable clamps for the S-LAN and E-LAN RS 485 networks are earthed by the terminal 3.

Fiber optic communication port (S-LAN)

HAZARD OF BLINDING

Never look directly into the fiber optic.

Failure to follow this instruction can cause serious injury.

The fiber optic connection can be made:

■ point-to-point to an optic star system

■ in a ring system (active echo).

The sending and receiving fiber optic fibers must be equipped with male ST type connectors.

The fiber optics are screw-locked to Rx and Tx connectors.

ACE850TP and ACE850FO network interfaces

ACE850TP communication interface.

ACE850FO communication interface.

ACE850TP and ACE850FO

Function

ACE850 multi-protocol communication interfaces are for Sepam series 40 and Sepam series 80 units.

They have two Ethernet communication ports to connect a Sepam unit to a single Ethernet network depending on the topology (star or ring):

■ For a star topology, only one communication port is used.

■ For a ring topology, both Ethernet communication ports are used to provide redundancy. This redundancy conforms to the RSTP 802.1d 2004 standard.

Either port can be used for connection:

■ To the S-LAN (Supervisory Local Area Network) port to connect a Sepam unit to an Ethernet communication network dedicated to supervision, using either of the following protocols:

- □ IEC 61850
- □ eModbus TCP/IP TRA 15.

■ To the E-LAN (Engineering Local Area Network) port, reserved for remote parameter setting and operation of a Sepam unit using SFT2841 software.

There are two versions of the ACE850 interface, which are identical except for the type of port featured:

■ ACE850TP (Twisted Pair), for connection to an Ethernet network (S-LAN or E-LAN) using a copper RJ45 10/100 Base TX Ethernet link.

■ ACE850FO (Fiber Optic), for connection to an Ethernet network (S-LAN or E-LAN) using a 100Base FX fiber optic connection (star or ring).

Compatible Sepam units

The ACE850TP and ACE850FO multi-protocol interfaces are compatible with the following Sepam units:

- Sepam series 40 version ≥ V7.00
- Sepam series 80 base version and application version ≥ V6.00 .

ACE850TP and ACE850FO network interfaces

Characteristics

ACE850TP and ACE850FO module							
Technical	characteristics						
Weight			0,4 kg (0.8	0,4 kg (0.88 lb)			
Assembly			On symmetrical DIN rail				
Operating tem	perature		-25°C to +	70°C (-13°F to	+158°F)		
Environmental	characteristics		Same cha	racteristics as	Sepam base u	inits	
Power sup	ply						
Voltage			24 to 250 V CC 110 to 240 V CA) V CA	
Range			-20 % / +1	0 %	-20 % / +1	0 %	
Maximum	ACE850TP		3,5 W in C	C	1,5 VA in (CA	
consumption	ACE850FO		6,5 W in C		2,5 VA in (
Inrush current			< 10 A 10	ms in CC	< 15 A 10	ms in CA	
Acceptable rip			12 %				
	omentary outages		100 ms				
Wired Et	hernet comr	nun	ication	ports (AC	E850TP)		
Number of por	ts		2 x RJ45 p	oorts			
Type of port			10/100 Ba				
Protocols			HTTP, FTP, SNMP, SNTP, ARP, SFT, CEI61850, TCP/				
Baud rate			IP, RSTP 801.1d 2004 10 or 100 Mbits/s				
Medium				CAT 5 STP or FTP or SFTP			
Maximum dista	anco		100 m (32		11		
Fiber optic Ethernet con				,	s (ACE85)		
		con	2				
Type of port							
Protocols						EI61850, TCP/	
110100010				801.1d 2004	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Baud rate			100 Mbits/s				
Fiber type			Multimode				
Wavelength			1300 nm				
Type of connect	ctor		SC				
Maximum	ength of fiber o	ptic	network				
Fiber optic	Minimum		imum	Sensitivity	Saturation	Maximum	
diameter	optical power	opti		RX (dBm)	RX (dBm)	distance	
(µm)	Tx (dBm)	pow (dB	/er Tx				
		(ub)	,				
50/125	-22,5	-14		-33,9	-14	2 km (1.24 mi)	
62,5/125	-19	-14		-33,9	-14	2 km (1.24 mi)	
				- , -			

Dimensions

ACE850TP and ACE850FO network interfaces Connection

ACE850TP: View of underside

CE850EC 2 3 4 5

ACE850FO: Front view

ACE850FO: View of underside

ACE850TP communication interfaces

- 1 ACE850 communication interface status LED
 - LED off = ACE850 de-energized
 - Green LED permanently on = ACE850 energized and operational
 - Red LED flashing = ACE850 not configured and/or not connected to the base unit
 - Red LED permanently on = ACE850 not operational (initialization in progress) or failed)
- 2 STS LED: communication status: green permanently on = OK
- 3 Ethernet Port 2 100 green LED: off = 10Mbps, permanently on = 100 Mbps
- 4 Ethernet Port 2 activity LED: flashing on transmission/reception
- 5 Ethernet Port 2 100 green LED: off = 10Mbps, permanently on = 100 Mbps
- 6 Ethernet Port 1 activity LED: flashing on transmission/reception
- 7 Power-supply terminal block
- Grounding/earthing terminal using supplied braid 8
- RJ45 socket to connect the interface to the Sepam base unit with a CCA614 cord : 9 ■ Sepam series 40: communication port(C)(identified by a white label on the Sepam unit)
 - Sepam series 80: port(F)(identified by a blue label on the Sepam unit)

10 RJ45 10/100 Base TX Ethernet communication port P2 (E-LAN or S-LAN)

11 RJ45 10/100 Base TX Ethernet communication port P1 (E-LAN or S-LAN)

ACE850FO communication interfaces

- 1 ACE850 communication interface status LED
 - LED off = ACE850 de-energized
 - Green LED permanently on = ACE850 energized and operational
 - Red LED flashing = ACE850 not configured and/or not connected to the base unit
 - Red LED permanently on = ACE850 not operational (initialization in progress) or failed)
- 2 STS LED: communication status: green permanently on = OK
- 3 Ethernet Port 2 100 green LED: permanently on = 100 Mbps
- Ethernet Port 2 activity LED: flashing on transmission/reception 4
- 5 Ethernet Port 2 100 green LED: permanently on = 100 Mbps
- 6 Ethernet Port 1 activity LED: flashing on transmission/reception

7 Power-supply terminal block

- 8 Grounding/earthing terminal using supplied braid
- 9 RJ45 socket to connect the interface to the Sepam base unit with a CCA614 cord : ■ Sepam series 40: communication port(c)(identified by a white label on the Sepam unit)
 - Sepam series 80: port (F)(identified by a blue label on the Sepam unit)
- 12 Tx fiber of 100 Base FX SC connector for Ethernet communication port P2 (E-LAN or S-LAN)

13 Rx fiber of 100 Base FX SC connector for Ethernet communication port P2 (E-LAN or S-LAN)

14 Tx fiber of 100 Base FX SC connector for Ethernet communication port P1 (E-LAN or S-LAN)

15 Rx fiber of 100 Base FX SC connector for Ethernet communication port P1 (E-LAN or S-LAN)

CAUTION

HAZARD OF BLINDING

Never look directly into the fiber optic.

Failure to follow this instruction can cause serious injury.

ACE850TP and ACE850FO network interfaces Connection

Connecting the ACE850 to a Sepam series 40

Connection to Sepam

■ The ACE850 communication interface should only be connected to Sepam series 40 or Sepam series 80 base units using a CCA614 prefabricated cord (length = 3m or 9.8ft, blue RJ45 fittings).

■ Sepam series 40: Connect the CCA614 cord to the connector C on the Sepam base unit (white label).

■ Sepam series 80: Connect the CCA614 cord to the connector F on the Sepam base unit (blue label).

Connection to Sepam

ACE850 interfaces must be powered by a 24 to 250 V DC or 110 to 240 V AC supply.

■ Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

■ Start by connecting the device to the protective ground and to the functional ground.

Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Terminals	Туре	Wiring
3 4	-/~ +/~	 Wiring without fittings: 1 wire with maximum cross-section of 0.2 to 2.5 mt² (≥ AWG 20-12) or 2 wires with maximum cross-section of 0.5 to 1 mm² (≥ AWG 20-18) stripped length: 8 to 10 mm (0.31 to 0.39 in) Wiring with fittings: recommended wiring with Schneider Electric fitting: DZ5CE015D for 1 wire 1.5 mm² (AWG 16) DZ5CE025D for 1 wire 2.5 mm² (AWG 12) AZ5DE010D for 2 wires 1 mm² (AWG 18) tube length: 8.2 mm (0.32 in). stripped length: 8 mm (0.31 in).
Protective earth	Screw terminal	1 green/yellow wire, max. length 3 m (9.8 ft) and max. cross-section 2.5 mm ² (AWG 12)
Functional earth	4 mm (0.16 in) ring lug	Earthing braid, supplied for connection to cubicle grounding

ACE909-2 RS 232 / RS 485 converter

Function

The ACE909-2 converter is used to connect a master/central computer equipped with a V24/RS 232 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

Without requiring any flow control signals, after the parameters are set, the ACE909-2 converter performs conversion, network polarization and automatic dispatching of frames between the master and the stations by two-way simplex (half-duplex, single-pair) transmission.

The ACE909-2 converter also provides a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces. The communication settings should be the same as the Sepam and supervisor communication settings.

ACE909-2 RS 232/RS 485 converter.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

Start by connecting the device to the protective earth and to the functional earth.

Screw tight all terminals, even those not in use.

Failure to follow these instructions will result in death or serious injury.

Characteristics

Mechanical characteristics			
Weight	0.280 kg (0.617 lb)		
Assembly	On symmetrical of	or asymmetrical DIN rail	
Electrical characteristics			
Power supply	110 to 220 V AC :	± 10%, 47 to 63 Hz	
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply	2000 Vrms, 50 H	z, 1 min	
Galvanic isolation between RS 232 and RS 485 interfaces	1000 Vrms, 50 H	z, 1 min	
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating		
Communication and Sepam int	erface distri	buted supply	
Data format	11 bits: 1 start, 8 data, 1 parity, 1 stop		
Transmission delay	< 100 ns		
Distributed power supply for Sepam interfaces	12 V DC or 24 V DC		
Maximum number of Sepam interfaces with distributed supply	12		
Environmental characteristics			
Operating temperature	-5°C to +55°C (+2	23°F to +131°F)	
Electromagnetic compatibility	IEC	Value	
	standard		
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode	
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode	
1.2/50 µs impulse waves	60255-5	3 kV common mode 1 kV differential mode	

ACE909-2 RS232/RS485 converter

Male 9-pin sub-D connector supplied with the ACE909-2.

Description and dimensions

(A) Terminal block for RS 232 link limited to 10 m (33 ft).

(B) Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.

1 screw-type male 9-pin sub-D connector is supplied with the converter. C Power-supply terminal block

- Distributed power supply voltage selector switch, 12 V DC or 24 V DC. 1
- 2 Protection fuse, unlocked by a 1/4 turn.
- 3 LEDs:
 - ON/OFF: on if ACE909-2 is energized
 - Tx: on if RS 232 sending by ACE909-2 is active
 - Rx: on if RS 232 receiving by ACE909-2 is active.
- SW1, parameter setting of 2-wire RS 485 network polarization and 4 line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150 Ω resistor			ON

SW2, parameter setting of asynchronous data transmission rate and format 5 (same parameters as for RS 232 link and 2-wire RS 485 network).

Rate (bauds)	SW2/1	SW2/2	SW2/3		
1200	1	1	1		
2400	0	1	1		
4800	1	0	1		
9600	0	0	1		
19200	1	1	0		
38400	0	1	0		
Format				SW2/4	SW2/5
With parity check				0	
Without parity check				1	
1 stop bit (compulsory for Sepam)					0
2 stop bits					1

Converter configuration when delivered

- 12 V DC distributed power supply
- 11-bit format, with parity check
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

RS 232 link

- To 2.5 mm² (AWG 12) screw type terminal block (A)
- Maximum length 10 m (33 ft)
- Rx/Tx: RS 232 receiving/sending by ACE909-2
- 0V: Rx/Tx common, do not earth.

2-wire RS 485 link with distributed power supply

- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

Power supply

- To 2.5 mm² (AWG 12) screw type terminal block (C)
- Reversible phase and neutral
- Earthed via terminal block and metal case (ring lug on back of case).

ACE919CA and ACE919CC RS 485 / RS 485 converters

ACE919CC RS 485/RS 485 converter.

Function

The ACE919 converters are used to connect a master/central computer equipped with an RS 485 type serial port as a standard feature to stations connected to a 2-wire RS 485 network.

Without requiring any flow control signals, the ACE919 converters perform network polarization and impedance matching.

The ACE919 converters also provide a 12 V DC or 24 V DC supply for the distributed power supply of the Sepam ACE949-2, ACE959 or ACE969 interfaces. There are 2 types of ACE919 converter:

- ACE919CC, DC-powered
- ACE919CC, DC-powered ■ ACE919CA, AC-powered.

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

- Always use a properly rated voltage sensing device to confirm that all power is off.
- Start by connecting the device to the
- protective earth and to the functional earth. Screw tight all terminals, even those not in
- use

Failure to follow these instructions will result in death or serious injury.

Characteristics

Mechanical characteristics

Weight	0.280 kg (0.617 lb)			
Assembly	On symmetrical or asymmetrical DIN rail			
Electrical characteristics	ACE919CA	ACE919CC		
Power supply	110 to 220 V AC ±10%, 47 to 63 Hz	24 to 48 V DC ±20%		
Protection by time-delayed fuse 5 mm x 20 mm (0.2 in x 0.79 in)	1 A rating	1 A rating		
Galvanic isolation between ACE power supply and frame, and between ACE power supply and interface supply		2000 Vrms, 50 Hz, 1 min		
Communication and Sepam int	erface distribut	ed supply		
Data format	11 bits: 1 start, 8 data,	1 parity, 1 stop		
Transmission delay	< 100 ns			
Distributed power supply for Sepam interfaces	12 V DC or 24 V DC			
Maximum number of Sepam interfaces with distributed supply	12			
Environmental characteristics				
Operating temperature	-5°C to +55°C (+23°F	to +131°F)		
Electromagnetic compatibility	IEC standard	Value		
Fast transient bursts, 5 ns	60255-22-4	4 kV with capacitive coupling in common mode 2 kV with direct coupling in common mode 1 kV with direct coupling in differential mode		
1 MHz damped oscillating wave	60255-22-1	1 kV common mode 0.5 kV differential mode		
1.2/50 μs impulse waves	60255-5	3 kV common mode 1 kV differential mode		

ACE919CA and ACE919CC RS 485 / RS 485 converters

Male 9-pin sub-D connector supplied with the ACE919.

Description and dimensions

(A) Terminal block for 2-wire RS 485 link without distributed power supply.

- B Female 9-pin sub-D connector to connect to the 2-wire RS 485 network, with distributed power supply.
 - 1 screw-type male 9-pin sub-D connector is supplied with the converter.
- C Power supply terminal block.
- 1 Distributed power supply voltage selector switch, 12 V DC or 24 V DC.
- 2 Protection fuse, unlocked by a 1/4 turn.
- 3 ON/OFF LED: on if ACE919 is energized.
- 4 SW1, parameter setting of 2-wire RS 485 network polarization and line impedance matching resistors.

Function	SW1/1	SW1/2	SW1/3
Polarization at 0 V via Rp -470 Ω	ON		
Polarization at 5 V via Rp +470 Ω		ON	
2-wire RS 485 network impedance matching by 150 Ω resistor			ON

Converter configuration when delivered

- 12 V DC distributed power supply
- 2-wire RS 485 network polarization and impedance matching resistors activated.

Connection

2-wire RS 485 link without distributed power supply

- To 2.5 mm² (AWG 12) screw type terminal block (A)
- L+, L-: 2-wire RS 485 signals
- + Shielding.

2-wire RS 485 link with distributed power supply

- To connector (B) female 9-pin sub-D
- 2-wire RS 485 signals: L+, L-
- Distributed power supply: V+ = 12 V DC or 24 V DC, V- = 0 V.

Power supply

- To 2.5 mm² (AWG 12) screw type terminal block (C)
- Reversible phase and neutral (ACE919CA)
- Earthed via terminal block and metal case (ring lug on back of case).

Sepam IEC 61850 level 1 EC1850

Sepam ECI850 server for IEC 61850.

Function

The ECI850 connects Sepam series 20, Sepam series 40 and Sepam series 80 units to an Ethernet network using the IEC 61850 protocol.

It acts as the interface between the Ethernet/IEC 61850 network and a Sepam RS485/Modbus network.

1 PRI surge arrester (cat. no. 16339) is supplied with the ECI850 to protect its power supply.

Characteristics

onaracteristics	
ECI850 module	
Technical characteristics	
Weight	0.17 kg (0,37 lb)
Assembly	On symmetrical DIN rail
Power supply	
Voltage	24 V DC (±10 %) supplied by a class 2 supply
Maximum consumption	4 W
Dielectric strength	1.5 kV
Environmental characteristi	cs
Operating temperature	-25 °C to +70 °C (-13 °F to +158 °F)
Storage temperature	-40 °C to +85 °C (-40 °F to +185 °F)
Relative humidity	5 to 95 % (without condensation) at +55 °C (131 °F)
Pollution degree	Class 2
Degree of protection	IP30
Electromagnetic compatibil	ity
Emission tests	
Emission (radiated and conducted)	EN 55022/EN 55011/FCC Class A
Immunity tests – Radiated disturba	nces
Electrostatic discharge	EN 61000-4-2
Radiated radio-frequency fields	EN 61000-4-3
Magnetic fields at power frequency	EN 61000-4-8
Immunity tests – Conducted distur	bances
Fast transient bursts	EN 61000-4-4
Surges	EN 61000-4-5
Conducted disturbances, induced by radio- frequency fields	EN 61000-4-6
Safety	
International	IEC 60950
United States	UL 508/UL 60950
Canada	cUL (in compliance with CSA C22.2, no. 60950)
Australia / New Zealand	AS/NZS 60950
Certification	
Europe	CE
2-wire/4-wire RS485 commu	nication ports
Electrical interface	
Standard	EIA 2-wire/4-wire RS485 differential
Max. number of Sepam units per ECI850	2 Sepam series 80 or 3 Sepam series 40 or 5 Sepam series 20
Maximum length of 2-wire/4-wire R	S485 network
Maximum length of network	1000 m (3300 ft)
Ethernet communication po	rt
Number of ports	1
Type of port	10/100 Base Tx
Protocols	HTTP, FTP, SNMP, SNTP, ARP, SFT, IEC 61850 TCP/IP
Transmission rate	10/100 Mbits/s
	·

Compatibility An ECI850 module can be used on the following Sepam base units, starting from indicated versions:

- base S20: V0526
- base S40: V3.0
- base S80: V3.0

Sepam IEC 61850 level 1 ECI850

Characteristics (cont.)

PRI surge arrester	
Electrical characteristics	
Utilisation voltage	48 VDC
Full discharge current	10 kA (8/20 µs wave)
Rated discharge current	5 kA (8/20 µs wave)
Level of protection	70 V
Response time	< 1 ns
Connection	
Tunnel terminals	Wires with maximum cross-section of 2.5 mm ² to 4 mm ² (AWG 12-10)

Description

2 3 4

F88076

5

6

- 1 1/ *F* LED: Power on and maintenance
- 2 Serial-link LEDs:
 - RS485 LED: link to network activated □ On: RS485 mode
 - □ Off: RS232 mode
 - flashing TX LED: ECI850 sending
 - flashing RX LED: ECI850 sending
- 3 Ethernet LEDs:
 - green LK LED on: link to network activated
 - flashing green Tx LED: ECI850 sending
 - flashing green Rx LED: ECI850 receiving
 - ∎ green 100 LED:
 - □ On: transmission rate = 100 Mbit/s
 - □ Off: transmission rate = 10 Mbit/s
- 4 10/100 Base Tx port for Ethernet connection via RJ45 connector
- 5 24 V DC connection
- 6 Reset button
- 7 RS485 connector
- 8 RS485 setup switches
- 9 RS232 connector

RS485 network setup.

RS485 network setup

The RS485 setup switches are used to select the network-polarisation (bias) and line-impedance matching resistors and the type of RS485 network (2-wire/4-wire). The default settings are for a 2-wire RS485 with network-polarization and line-impedance matching resistors.

Line-impedance matching using resistors	SW1	SW2	SW3	SW4	SW5	SW6
2-wire RS485	OFF	ON				
4-wire RS485	ON	ON				
Polarisation (bias)	SW1	SW2	SW3	SW4	SW5	SW6
at 0 V			ON			
at 5 V				ON		
RS485 network type	SW1	SW2	SW3	SW4	SW5	SW6
2-wire					ON	ON
4-wire					OFF	OFF

Ethernet link set-up

The TCSEAK0100 configuration kit can be used to connect a PC to the ECI850 to set up the Ethernet link.

Sepam IEC 61850 level 1 ECI850

Dimensions

CAUTION

TO AVOID DAMAGING THE ECI850

Connect the PRI surge arrester as indicated in the diagrams below.

Check the quality of the earthing conductors connected to the surge arresters.

The equipment may be damaged if these instructions are not followed.

Connection

- Connect the supply and the RS485 twisted pair using the \leq 2.5 mm² cable (\geq AWG 12).
- Connect the 24 V DC supply and earth to inputs 1, 5 and 3 on the PRI surge arresters supplied with the ECI850.
- Connect outputs 2 and 6 of PRI surge arresters (cat. no. 16595) to the and + terminals on the terminal block with black screws.
- Connect the RS485 twisted pair (2 or 4 wires) to the terminals (RX+ RX- or RX+ RX- TX+ TX-) on the terminal block with black screws.
- \blacksquare Connect the shielding of the RS485 twisted pair to the $\, \leftrightarrow \,$ terminal on the terminal block with black screws.
- Connect the Ethernet cable to the green RJ45 connector.

2-wire RS485 network

EROA77

4-wire RS485 network

Sepam IEC 61850 level 1 **ECI850**

Architecture example The diagrams below show two examples of communication architectures using the ECI850.

Note: Rc = line-impedance matching resistor.

The maximum Sepam configuration for a Sepam IEC 61850 level 1 server is: 2 Sepam series 80 units or 3 Sepam series 40 units or 5 Sepam series 20 units.

PowerLogic EGX100 Ethernet gateway

PowerLogic EGX100

Function

The EGX100 serves as an Ethernet gateway for PowerLogic system devices and for any other communicating devices utilising the Modbus protocol. The EGX100 gateway offers complete access to status and measurement information provided by the connected devices via PowerLogic software installed on a PC.

PowerLogic software compatibility

PowerLogic software is recommeded as a user interface because they provide access to all status and measurement information. They also prepare summary reports. The EGX100 is compatible with:

- PowerLogic ION EEM enterprise energy management software
- PowerLogic ION Enterprise power management software
- PowerLogic System Manager power management software
- PowerLogic PowerView power monitoring software

Architecture

DE88422

Setup

Setup via an Ethernet network

Once connected to an Ethernet network, the EGX100 gateway can be accessed by a standard internet browser via its IP address to:

- specify the IP address, subnet mask, and gateway address of the EGX gateway
- configure the serial port parameters (baud rate, parity, protocol, mode, physical
- interface, and timeout value) ■ create user accounts
- create or update the list of the connected products with their Modbus or
- PowerLogic communication parameters
- configure IP filtering to control access to serial devices
- access Ethernet and serial port diagnostic data
- update the firmware.
- specify the user language.

Setup via a serial connection

Serial setup is carried out using a PC connected to the EGX100 via an RS232 link. This setup:

- specifies the IP address, subnet mask, and gateway address of the EGX gateway
- specifies the language used for the setup session.

Part numbers

EGX100 EGX100

EGX100

PowerLogic EGX300 Integrated gateway-server

PowerLogic EGX300

Function

The EGX300 integrated gateway-server uses only a simple web browser and Ethernet network to access, log and display real-time data and trend plots from up to 64 PowerLogic system devices, including other gateway devices on the same network. The EGX300 embedded web page function and 512 Mb of onboard memory allow users to create pages for viewing data from their electrical system and store third-party web pages and documents such as instruction bulletins or equipment and system diagrams.

PowerLogic software compatibility

Combine the EGX300 with PowerLogic software for extensive analysis and additional functionality. The EGX300 is compatible with:

- PowerLogic ION EEM enterprise energy management software
- PowerLogic ION Enterprise power management software
- PowerLogic System Manager power management software
- PowerLogic PowerView power monitoring software

Architecture

Features

 View real-time and historical information from multiple locations via any Microsoftcompatible web browser

- Automatically detect networked devices for easy setup
- Automatically email or FTP selected logged data to your PC for additional analysis
- Select the logging intervals and topics you want logged
- Ensures data and system security through password protection and controlled network access to individual web pages

■ Simplifies installation by receiving control power through the Ethernet cable utilising Power-over-Ethernet and offers the option to utilise 24 Vdc control power

Part numbers

EGX300 EGX300

EGX300

Ethernet EGX100 gateway Ethernet EGX300 server

- 24 Vdc power connection. 1
- 2 10/100 Base TX (802.3af) port for connection to Ethernet via an RJ45 connector.
- 3 Ethernet and serial indication LEDs.
- 4 Power/Status LED. Reset button. 5
- RS485 connection. 6
- Dip switches for biasing, termination, and 2-wire/4-wire 7 jumpers.
- 8 RS232 connection.

EGX300

EGX100 EGX300 Weight 170 g 170 g Dimensions (H x W x D) 91 x 72 x 68 mm 91 x 72 x 68 mm Din rail Din rail Mounting Power-over-Ethernet (PoE) Class 3 Class 3 24 V DC if not using PoE 24 V DC if not using PoE Power supply -25 to 70°C Operating temperature -25 to 70°C Humidity rating 5 % to 95 % relative humidity 5 % to 95 % relative humidity (without condensation) at (without condensation) at +55 °C +55 °C Regulatory/standards compliance for electromagnetic interference EN 55022/EN 55011/ EN 55022/EN 55011/ Emissions (radiated and conducted) FCC class A FCC class A Immunity for industrial EN 61000-6-2 EN 61000-6-2 environments: EN 61000-4-2 EN 61000-4-2 - electrostatic discharge - radiated RF EN 61000-4-3 EN 61000-4-3 - electrical fast transients EN 61000-4-4 EN 61000-4-4 - surge EN 61000-4-5 EN 61000-4-5 EN 61000-4-6 EN 61000-4-6 - conducted RF - power frequency magnetic EN 61000-4-8 EN 61000-4-8 field Regulatory/standards compliance for safety International (CB scheme) IEC 60950 IEC 60950

international (OB contenne)			
USA	UL508/UL60950	UL508/UL60950	
Canada	cUL (complies with CSA C22.2, no. 60950)	cUL (complies with CSA C22.2, no. 60950)	
Europe	EN 60950	EN 60950	
Australia/New Zealand	AS/NZS25 60950	AS/NZS 60950	
Serial ports			
Number of ports	1	1	
Types of ports	RS232 or RS485 (2-wire or 4- wire), depending on settings	RS232 or RS485 (2-wire or 4- wire), depending on settings	
Protocol	Modbus RTU/ASCII PowerLogic [®] (SY/MAX), JBus	Modbus RTU/ASCII PowerLogic [®] (SY/MAX), JBus	
Maximum baud rate	38400 or 57600 baud depending on settings	57600	
Maximum number of directly connected devices	32	64	
Ethernet port			
Number of ports	1	1	
Types of ports	One 10/100 base TX (802.3af) port	One 10/100 base TX (802.3af) port	
Protocol	HTTP, Modbus TCP/IP, FTP, SNMP (MIB II), SNTP, SMTP	HTTP, Modbus TCP/IP, FTP, SNMP (MIB II), SNTP, SMTP	
Baud rate	10/100 MB	10/100 MB	
Web server			
Memory for custom HTML pages	None	512 Mo	

Installation

Characteristics

PE86181

Selection guide

Phase current sensors

- Two types of sensor may be used with Sepam to measure phase current:
- 1 A or 5 A current transformers
- LPCT (Low Power Current Transducer) type current sensors.

Selection guide

- 1 A or 5 A current sensors are:
- to be sized case by case: accuracy, electrical characteristics, etc.
- defined according to the IEC 60044-1 standard.

The LPCT type current sensors are:

simple to size: a given LPCT sensor is suitable for the measurement of different rated currents: for example, the CLP1 sensor measures rated currents of 25 to 1250 A

■ defined according to the IEC 60044-8 standard

(rated secondary voltage = 22.5 mV).

Residual current sensors

The residual current value may be obtained using different sensors and assemblies, which are chosen according to the required performance (measurement accuracy and earth fault protection sensitivity).

- Residual current may be:
- measured by a specific CSH120 or CSH200 core balance CT

■ measured by a core balance CT with a ratio of 1/n (50 ≤ n ≤ 1500), with an ACE990 adapter.

■ calculated by Sepam from the vector sum of the 3 phase currents.

Selection guide

Measurement sensors	Accuracy	Recommended minimum set point	Easy assembly	
CSH120 or CSH200 core balance CT	***	>1A	*	
1 or 3 x 1 A or 5 A CT+ CSH30	**	0.10 InCT (DT) 0.05 InCT (IDMT)	**	
Core balance CT + ACE990	**	0.10 InCT (DT) 0.05 InCT (IDMT)	<pre>** revamping * new</pre>	
3 phase CT (I0 calculated by Sepam)			***	

(1) Recommended minimum set point for ANSI 50N/51N function with H2 restraint: 0.10 InCT (DT) or 0.05 InCT (IDMT).

It is advisable not to set the earth fault protection functions below the recommended minimum set point to avoid any risk of unwanted tripping caused by oversensitive detection of residual current or false residual current due to the saturation of a CT. Lower settings may be used to trigger alarms.

Voltage transformers

PE88083

VRQ3 without fuses.

VRQ3 with fuses.

Function

Sepam may be connected to any standard voltage transformer with a rated secondary voltage of 100 V to 220 V.

Schneider Electric offers a range of voltage transformers:

to measure phase-to-neutral voltages: voltage transformers with one insulated MV terminal

■ to measure phase-to-phase voltages: voltage transformers with two insulated MV terminals

with or without integrated protection fuses.

Consult us for more information.

Connection

The voltage transformers connect to Sepam:

■ directly, for Sepam series 40 and Sepam series 80

■ or via the CCT640 connector for Sepam B21, B22 and the additional voltage inputs for Sepam B83.

The table below presents the different connection possibilities for voltage transformers to Sepam.

	Sepam B21 and B22	Sepam series 40	Sepam series 80	
Number of voltage inputs	4	3	4 main	4 additional ⁽¹⁾
Intermediate connector	CCT640	-	-	CCT640
Sepam connector	В	E	E	B2

(1) Sepam B83 only.

■ when voltage transformers are connected directly to the E connector on Sepam, four transformers built into the Sepam base unit ensure matching and isolation between the VTs and the Sepam input circuits.

When voltage transformers are connected via the CCT640 connector, the four transformers for matching and isolation between the VTs and the Sepam input circuits are contained in the CCT640.

1A/5A current transformers

E8808

ARJA1.

ARJP3.

Function

Sepam may be connected to any standard 1 A or 5 A current transformer. Schneider Electric offers a range of current transformers to measure primary currents from 50 A to 2500 A. Consult us for more information.

Sizing of current transformers

Current transformers are sized so as not to be saturated by the current values they are required to measure accurately (minimum 5 ln).

For overcurrent protection functions

■ with DT tripping curve:

the saturation current must be 1.5 times greater than the setting

■ with IDMT tripping curve: the saturation current must be 1.5 times greater than the highest working value on the curve.

Practical solution when there is no information on the settings

Rated secondary current (in)	Accuracy burden	Accuracy class	CT secondary resistance R _{ct}	Wiring resistance R _r
1 A	2.5 VA	5P 20	< 3 Ω	< 0.075 Ω
5A	7.5 VA	5P 20	< 0.2 Ω	< 0.075 Ω

1A/5A current transformers

CCA630/CCA634 connector

Function

The current transformers (1 A or 5 A) are connected to the CCA630 or CCA634 connector on the rear panel of Sepam:

The CCA630 connector is used to connect 3 phase current transformers to Sepam
 The CCA634 connector is used to connect 3 phase current transformers and a residual current transformer to Sepam.

The CCA630 and CCA634 connectors contain interposing ring CTs with through primaries, which ensure impedance matching and isolation between the 1 A or 5 A circuits and Sepam when measuring phase and residual currents. The connectors can be disconnected with the power on since disconnection does not open the CT secondary circuit.

DANGER

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

• Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it.

Consider all sources of power, including the possibility of backfeeding. Always use a properly rated voltage sensing device to confirm that all power is off.

To remove current inputs to the Sepam unit, unplug the CCA630 or CCA634 connector without disconnecting the wires from it. The CCA630 and CCA634 connectors ensure continuity of the current transformer secondary circuits.
 Before disconnecting the wires connected to the CCA630 or CCA634

connector, short-circuit the current transformer secondary circuits.

Failure to follow these instructions will result in death or serious injury.

1A/5A current transformers

Connecting and assembling the CCA630 connector

1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after wiring.

2. If necessary, remove the bridging strap linking terminals 1, 2 and 3. This strap is supplied with the CCA630.

3. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the 6 screws that guarantee the continuity of the CT secondary circuits.

The connector accommodates wires with cross-sections of 1.5 to 6 mm²

(AWG 16-10).

4. Close the side shields.

5. Plug the connector into the 9-pin inlet on the rear panel (item B).

6. Tighten the 2 CCA630 connector fastening screws on the rear panel of Sepam.

Bridging of terminals 1, 2, 3 and 9

Bridging of terminals 1, 2 and 3

Connecting and assembling the CCA634 connector

1. Open the 2 side shields for access to the connection terminals. The shields can be removed, if necessary, to make wiring easier. If removed, they must be replaced after wiring.

 According to the wiring required, remove or reverse the bridging strap. This is used to link either terminals 1, 2 and 3, or terminals 1, 2, 3 and 9 (see picture opposite).
 Use terminal 7 (1 A) or 8 (5 A) to measure the residual current according to the CT secondary.

4. Connect the wires using 4 mm (0.16 in) ring lugs and check the tightness of the 6 screws that guarantee the continuity of the CT secondary circuits. The connector accommodates wires with cross-sections of 1.5 to 6 mm²

(AWG 16-10). The wires only exit from the base.

- 5. Close the side shields.
- 6. Insert the connector pins into the slots on the base unit.

7. Flatten the connector against the unit to plug it into the 9-pin SUB-D connector (principle similar to that of the MES module).

8. Tighten the mounting screw.

CAUTION

LAUTION HAZARD OF IMPROPER OPERATION

Sepam series 20, Sepam series 40

■ Do not connect the connector A residual current input I0 (terminals 18 and 19) and the CCA634 residual current input (terminal 9 and 7 or 8) simultaneously.

These 2 residual current input use the same Sepam analog channel.

Sepam series 80

■ Do not use a CCA634 on connector B1 and residual current input I0 on connector E (terminals 14 and 15) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B1 will disturb input I0 on connector E.

■ Do not use a CCA634 on connector B2 and residual current input I'0 on connector E (terminals 17 and 18) simultaneously. Even if it is not connected to a sensor, a CCA634 on connector B2 will disturb input I'0 on connector E.

Failure to follow this instruction can cause equipment damage.

LPCT type current sensors

PE88088

CAUTION

HAZARD OF NON-OPERATION

Set the microswitches for the CCA670/ CCA671 connector before commissioning the device.

■ Check that only one microswitch is in position 1 for each block L1, L2, L3 and that no microswitch is in the center position.

Check that the microswitch settings on all 3 blocks are identical.

Failure to follow these instructions can cause equipement damage.

Function

Low Power Current Transducer (LPCT) type sensors are voltage-output sensors, which are compliant with the IEC 60044-8 standard. The Schneider Electric range of LPCTs includes the following sensors: CLP1, CLP2, CLP3, TLP130, TLP160 and TLP190.

CCA670/CCA671 connector

Function

The 3 LPCT sensors are connected to the CCA670 or CCA671 connector on the rear panel of Sepam.

The connection of only one or two LPCT sensors is not allowed and causes Sepam to go into fail-safe position.

The two CCA670 and CCA671 interface connectors serve the same purpose, the difference being the position of the LPCT sensor plugs:

- CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
- CCA671: radial plugs, for Sepam series 80.

Description

- 1 3 RJ45 plugs to connect the LPCT sensors.
- 2 3 blocks of microswitches to set the CCA670/CCA671 to the rated phase current value.
- Microswitch setting/selected rated current equivalency table (2 In values per position).
- 9-pin sub-D connector to connect test equipment (ACE917 for direct connector or via CCA613).

Rating of CCA670/CCA671 connectors

The CCA670/CCA671 connector must be rated according to the rated primary current In measured by the LPCT sensors. In is the current value that corresponds to the rated secondary current of 22.5 mV. The possible settings for In are (in A): 25, 50, 100, 125, 133, 200, 250, 320, 400, 500, 630, 666, 1000, 1600, 2000, 3150. The selected In value should be:

- entered as a Sepam general setting
- configured by microswitch on the CCA670/CCA671 connector.

Operating mode:

1. Use a screwdriver to remove the shield located in the "LPCT settings" zone; the shield protects 3 blocks of 8 microswitches marked L1, L2, L3.

2. On the L1 block, set the microswitch for the selected rated current to "1" (2 In values per microswitch).

 The table of equivalencies between the microswitch settings and the selected rated current In is printed on the connector

■ Leave the 7 other microswitches set to "0".

3. Set the other 2 blocks of switches L2 and L3 to the same position as the L1 block and close the shield.

LPCT type current sensors

Test accessories

Accessory connection principle

- HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS
- Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions.
- NEVER work alone.
- Turn off all power supplying this equipment before working on or inside it.
- Consider all sources of power, including the possibility of backfeeding.
- Always use a properly rated voltage sensing device to confirm that all power is off.

Failure to follow these instructions will result in death or serious injury.

- 1 LPCT sensor, equipped with a shielded cable fitted with a yellow RJ 45 plug which is plugged directly into the CCA670/CCA671 connector.
- **2** Sepam protection unit.
- 3 CCA670/CCA671 connector, LPCT voltage interface, with microswitch setting of rated current:
 - CCA670: lateral plugs, for Sepam series 20 and Sepam series 40
 CCA671: radial plugs, for Sepam series 80.
- 4 CCA613 remote test plug, flush-mounted on the front of the cubicle and equipped with a 3-meter (9.84 ft) cord to be plugged into the test plug of the CCA670/ CCA671 interface connector (9-pin sub-D).
- 5 ACE917 injection adapter, to test the LPCT protection chain with a standard injection box.
- 6 Standard injection box.

LPCT type current sensors

Test accessories

ACE917 injection adapter

Function

The ACE917 adapter is used to test the protection chain with a standard injection box, when Sepam is connected to LPCT sensors.

- The ACE917 adapter is inserted between: The standard injection box
- The standard injection
 The LPCT test plug:
- □ integrated in the Sepam CCA670/CCA671 interface connector
- □ or transferred by means of the CCA613 accessory.
- The following are supplied with the ACE917 injection adapter:
- Power supply cord
- 3-meter (9.84 ft) cord to connect the ACE917 to the LPCT test plug on
- CCA670/CCA671 or CCA613.

Characteristics

Power supply	115/230 V AC
Protection by time-delayed fuse 5 mm x 20 mm	0.25 A rating
(0.2 x 0.79 in)	

Accessory connection principle

CCA613 remote test plug

Function

The CCA613 test plug, flush-mounted on the front of the cubicle, is equipped with a 3-meter (9.84 ft) cord to transfer data from the test plug integrated in the CCA670/CCA671 interface connector on the rear panel of Sepam.

Front view with cover lifted.

1.81

Right side view.

LAZARD OF CUTS

 Trim the edges of the cut-out plates to remove any jagged edges.

 Failure to follow this instruction can cause serious injury.

CSH120 and CSH200 Core balance CTs

CSH120 and CSH200 core balance CTs.

Function

The specifically designed CSH120 and CSH200 core balance CTs are for direct residual current measurement. The only difference between them is the diameter. Due to their low voltage insulation, they can only be used on cables.

Characteristics

	CSH120	CSH200
Inner diameter	120 mm (4.7 in)	200 mm (7.9 in)
Weight	0.6 kg (1.32 lb)	1.4 kg (3.09 lb)
Accuracy	±5% at 20°C (68°F)
	±6% max. from -25 (-13°F to +158°F)	5°C to 70°C
Transformation ratio	1/470	
Maximum permissible current	20 kA - 1 s	
Operating temperature	-25°C to +70°C (-1	3°F to +158°F)
Storage temperature	-40°C to +85°C (-4	0°F to +185°F)

Dimensions

Dimensions	Α	В	D	Е	F	н	J	K	L
CSH120	120	164	44	190	80	40	166	65	35
(in)	(4.75)	(6.46)	(1.73)	(7.48)	(3.14)	(1.57)	(6.54)	(2.56)	(1.38)
CSH200	196	256	46	274	120	60	254	104	37
(in)	(7.72)	(10.1)	(1.81)	(10.8)	(4.72)	(2.36)	(10)	(4.09)	(1.46)

CSH120 and CSH200 Core balance CTs

HAZARD OF ELECTRIC SHOCK, ELECTRIC ARC OR BURNS

Only qualified personnel should install this equipment. Such work should be performed only after reading this entire set of instructions and checking the technical characteristics of the device.

NEVER work alone.

■ Turn off all power supplying this equipment before working on or inside it. Consider all sources of power, including the possibility of backfeeding.

Always use a properly rated voltage sensing device to confirm that all power is off.

■ Only CSH120, CSH200 and CSH280 core balance CTs can be used for direct residual current measurement. Other residual current sensors require the use of an intermediate device, CSH30, ACE990 or CCA634.

■ Install the core balance CTs on insulated cables.

■ Cables with a rated voltage of more than 1000 V must also have an earthed shielding.

Failure to follow these instructions will result in death or serious injury.

CAUTION

HAZARD OF NON-OPERATION

Do not connect the secondary circuit of the CSH core balance CTs to earth.

This connection is made in Sepam.

Failure to follow this instruction can cause equipement damages.

Assembly

Group the MV cable (or cables) in the middle of the core balance CT. Use non-conductive binding to hold the cables.

Remember to insert the 3 medium voltage cable shielding earthing cables through the core balance CT.

Assembly on MV cables.

Assembly on mounting plate.

Connection

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding). Connection to Sepam series 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current l'0 input, on connector (E), terminals 18 and 17 (shielding).

Recommended cable

- Sheathed cable, shielded by tinned copper braid
- Minimum cable cross-section 0.93 mm² (AWG 18)
- Resistance per unit length < 100 m Ω /m (30.5 m Ω /ft)
- Minimum dielectric strength: 1000 V (700 Vrms)
- Connect the cable shielding in the shortest manner possible to Sepam
- Flatten the connection cable against the metal frames of the cubicle. The connection cable shielding is grounded in Sepam. Do not ground the cable by

any other means. The maximum resistance of the Sepam connection wiring must not exceed 4 Ω (i.e. 20 m maximum for 100 m Ω/m or 66 ft maximum for 30.5 m Ω/ft).

CSH30 Interposing ring CT

Vertical assembly of CSH30 interposing ring CT.

Horizontal assembly of CSH30 interposing ring CT.

Function

The CSH30 interposing ring CT is used as an interface when the residual current is measured using 1 A or 5 A current transformers.

Characteristics

Weight	0.12 kg (0.265 lb)
	5 ()
Assembly	On symmetrical DIN rail
	In vertical or horizontal position

Dimensions

Connection

2Ø 0.18

The CSH30 is adapted for the type of current transformer, 1 A or 5 A, by the number of turns of the secondary wiring through the CSH30 interposing ring CT:

5 A rating - 4 turns 1 A rating - 2 turns

Connection to 5 A secondary circuit

1. Plug into the connector. 2. Insert the transformer secondary wire through the CSH30 interposing ring CT 4 times.

Connection to 1 A secondary circuit

1. Plug into the connector.

2. Insert the transformer secondary wire through the CSH30 interposing ring CT twice.

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding). **Connection to Sepam series 80**

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding).

Recommended cable

- Sheathed cable, shielded by tinned copper braid
- Minimum cable cross-section 0.93 mm² (AWG 18) (max. 2.5 mm², AWG 12)
- **Resistance per unit length** < 100 m Ω /m (30.5 m Ω /ft)
- Minimum dielectric strength: 1000 V (700 Vrms)
- Maximum length: 2 m (6.6 ft).

It is essential for the CSH30 interposing ring CT to be installed near Sepam (Sepam - CSH30 link less than 2 m (6.6 ft) long).

Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

Schneider

ACE990 Core balance CT interface

ACE990 core balance CT interface.

Function

The ACE990 is used to adapt measurements between an MV core balance CT with a ratio of 1/n ($50 \le n \le 1500$), and the Sepam residual current input.

Characteristics

Weight	0.64 kg (1.41 lb)
Assembly	Mounted on symmetrical DIN rail
Amplitude accuracy	±1%
Phase accuracy	< 2°
Maximum permissible current	20 kA - 1 s (on the primary winding of an MV core balance CT with a ratio of 1/50 that does not saturate)
Operating temperature	-5°C to +55°C (+23°F to +131°F)
Storage temperature	-25°C to +70°C (-13°F to +158°F)

Description and dimensions

(E) ACE990 input terminal block, for connection of the core balance CT.

SACE990 output terminal block, for connection of the Sepam residual current.

ACE990 Core balance CT interface

Connection

Connection of core balance CT

Only one core balance CT can be connected to the ACE990 interface. The secondary circuit of the MV core balance CT is connected to 2 of the 5 ACE990 interface input terminals. To define the 2 input terminals, it is necessary to know the following:

- Core balance CT ratio (1/n)
- Core balance CT power
- Close approximation of rated current In0

(In0 is a general setting in Sepam and defines the earth fault protection setting range between 0.1 In0 and 15 In0).

The table below can be used to determine:

■ The 2 ACE990 input terminals to be connected to the MV core balance CT secondary

The type of residual current sensor to set

■ The exact value of the rated residual current In0 setting, given by the following formula: **In0 = k x number of core balance CT turns** with k the factor defined in the table below.

The core balance CT must be connected to the interface in the right direction for correct operation: the MV core balance CT secondary output terminal S1 must be connected to the terminal with the lowest index (Ex).

K value	ACE990 input terminals to be connected	Residual current sensor setting	Min. MV core balance CT power
0.00578	E1 - E5	ACE990 - range 1	0.1 VA
0.00676	E2 - E5	ACE990 - range 1	0.1 VA
0.00885	E1 - E4	ACE990 - range 1	0.1 VA
0.00909	E3 - E5	ACE990 - range 1	0.1 VA
0.01136	E2 - E4	ACE990 - range 1	0.1 VA
0.01587	E1-E3	ACE990 - range 1	0.1 VA
0.01667	E4 - E5	ACE990 - range 1	0.1 VA
0.02000	E3 - E4	ACE990 - range 1	0.1 VA
0.02632	E2-E3	ACE990 - range 1	0.1 VA
0.04000	E1-E2	ACE990 - range 1	0.2 VA
0.05780	E1-E5	ACE990 - range 2	2.5 VA
0.06757	E2 - E5	ACE990 - range 2	2.5 VA
0.08850	E1 - E4	ACE990 - range 2	3.0 VA
0.09091	E3-E5	ACE990 - range 2	3.0 VA
0.11364	E2-E4	ACE990 - range 2	3.0 VA
0.15873	E1-E3	ACE990 - range 2	4.5 VA
0.16667	E4 - E5	ACE990 - range 2	4.5 VA
0.20000	E3 - E4	ACE990 - range 2	5.5 VA
0.26316	E2 - E3	ACE990 - range 2	7.5 VA

Connection to Sepam series 20 and Sepam series 40

To residual current I0 input, on connector (A), terminals 19 and 18 (shielding).

Connection to Sepam series 80

- To residual current I0 input, on connector (E), terminals 15 and 14 (shielding)
- To residual current I'0 input, on connector (E), terminals 18 and 17 (shielding).

Recommended cables

Cable between core balance CT and ACE990: less than 50 m (160 ft) long
 Sheathed cable, shielded by tinned copper braid between the ACE990 and

- Sepam, maximum length 2 m (6.6 ft) ■ Cable cross-section between 0.93 mm² (AWG 18) and 2.5 mm² (AWG 12)
- **Example 100 Boost and 200** Resistance per unit length less than 100 m Ω /m (30.5 m Ω /ft)
- Minimum dielectric strength: 100 Vrms.

Connect the connection cable shielding in the shortest manner possible (2 cm or 5.08 in maximum) to the shielding terminal on the Sepam connector. Flatten the connection cable against the metal frames of the cubicle.

The connection cable shielding is grounded in Sepam. Do not ground the cable by any other means.

Example:

Given a core balance CT with a ratio of 1/400 2 VA, used within a measurement range of 0.5 A to 60 A.

- How should it be connected to Sepam via the ACE990? 1. Choose a close approximation of the rated current In0, *i.e.* 5 A.
- 2. Calculate the ratio:
- approx. In0/number of turns = 5/400 = 0.0125.
- 3. Find the closest value of k in the table opposite to k = 0.01136.
- 4. Check the mininum power required for the core balance CT: 2 VA core balance CT > 0.1 VA V OK.
- Connect the core balance CT secondary to ACE990 input terminals E2 and E4.
- 6. Set Sepam up with
- $In0 = 0.01136 \times 400 = 4.5 A.$

This value of In0 can be used to monitor current between 0.45 A and 67.5 A.

Wiring of MV core balance CT secondary circuit:

S1 output to ACE990 E2 input terminal
 S2 output to ACE990 E4 input terminal.

schneider-electric.com

The technical guide

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... These technical guides help you comply with installation standards and rules i.e.: the electrical installation guide, the protection guide, the switchboard implementation guide, the technical booklets and the co-ordination tables all form genuine reference tools for the design of high performance electrical installations. For example, the LV protection co-ordination guide - discrimination and cascading - optimises choice of protection and connection devices while also increasing markedly continuity of supply in the installations.

Sepam series 20 Sepam series 40 Sepam series 80

Order form

Range description	3
Sepam series 20 and Sepam series 40	51
Sepam series 80	89
Additional modules and accessories	143
Sepam series 20	224
Sepam series 40	225
Sepam series 80	226
Sepam 100 LD	227
Sepam 100 MI	228
Sepam accessories and spare parts	229
Index	233

Sepam series 20 Ready-to-use configuration

Number of identical Sepam configurations ordered

type

This order form can be used to define a complete Sepam configuration. Check the boxes 🔀 that match your choices.

СТ 📃

СТ 📃

СТ

СТ

СТ 📃

59629

LPCT

LPCT

LPCT

LPCT

LPCT

59631

CCA634 CCA670 CCT640

VT 🔲 PT 🔲

59632

Base unit, conn	ectors an	d applic	ation				
Base unit and UMI				Application	Туре		Sensor
Base unit with advanced	UMI	S10UD	59607 📃	Substation	S20	59620	СТ 📃
With lead seal acce	essory ⁽¹⁾	AMT852	59639 📃		S24	59778	СТ 📃
(1) Can be used only with	n an advance l	JMI.		Transformer	T20	59621	СТ 📃
Base unit with basic UMI		S10UX	59603		T24	59779	СТ
Remote advanced	UMI module	DSM303	59608	Motor	M20	59622	СТ 📃
Connection cord	L=0.6 m	CCA770	59660	Busbars	B21	59624	
	L = 2 m	CCA772	59661 📃		B22	59625	
	L=4 m	CCA774	59662 📃				59630
Mounting plate		AMT840	59670				CCA630
Working language							-
Sepam series 20	EN/FR		59609 📃				
	EN/ES		59611 📃				
Connectors				Note:			
Туре	Screw-type	CCA620	59668 📃	CCA630: 3 phas CCA634: 3 phas			
	Ring-lug	CCA622	59669 📃	007034. 3 pilas	01.10		

Modules, communicat	tion interfa	ices and o	core balance CTs					
Core balance CTs			Modules					
Core balance CT, Ø 120 mm	CSH120	59635 📃	Input / output modules					
Core balance CT, Ø 200 mm	CSH200	59636	10 inputs + 4 outputs, 24-25	50 V DC			MES114	59646 📃
Interposing ring CT	CSH30	59634 📃	10 inputs + 4 outputs, 110-1	25 V DC / V AC			MES114E	59651
Core balance CT interface	ACE990	59672	10 inputs + 4 outputs, 220-2	250 V DC / V AC			MES114F	59652
Note: only one core balance CT car	n be added.		Note: the Sepam base unit	has 4 outputs; onl	y one input/o	utput module	can be adde	d.
Warning: Using core balance CTs is	s incompatible v	vith	Remote modules				Connectio	n cord
the CCA634.	the CCA634.		8 temperature sensor MET148-	MET148-2	59641 📃	L=0.6 m	CCA770	59660
			module			L=2 m	CCA772	59661 📃
						L=4 m	CCA774	59662 📃
			Note: the MET148-2 can be	e used only with ap	plications T a	and M.		
			Analog output module	MSA141	59647 📃	L=0.6 m	CCA770	59660
						L=2 m	CCA772	59661 📃
						L=4 m	CCA774	59662
			Note: MSA141 can be used	d with all applicatio	ns.			
			Communication inter	faces				

Communication interfac	es			
Modbus interfaces			Connectio	on cord
2-wire RS 485 interface	ACE949-2	59642	CCA612	59663 📃
4-wire RS 485 interface	ACE959	59643	CCA612	59663
Fiber optic interface	ACE937	59644 📃	CCA612	59663 📃
Multi-protocol interfaces (M	odbus, DNP3 (or IEC 60870-5-103)		
2-wire RS 485 interface	ACE969TP-2	59723	CCA612	59663 📃
Fiber optic interface	ACE969FO-2	2 59724 📃	CCA612	59663

Note: only one interface per application.

Sepam series 40 Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes \mathbf{x} or indicate the required quantities in the appropriate spaces according to your choices.

Base unit, c	onnectors a	nd appli	cation						
Base unit and	UMI			Application	Туре		Sensor		
Base unit with adva	inced UMI	S10MD	59604 📃	Substation	S40	59680	CT 🗖	СТ 📃	LPCT 🔛
With lead sea	al accessory ⁽¹⁾	AMT852	59639 📃		S41	59681	CT 📃	CT 📃	LPCT 📃
(1) Can be used on	ly with an advance	UMI.			S42	59682	CT 🗖	СТ 📃	LPCT
Base unit with basic	UMI	S10MX	59600		S43	59687	CT 🗖	СТ 📃	LPCT
Remote adva	nced UMI module	DSM303	59608		S50	59780	CT 🔲	СТ 📃	LPCT 📃
Connection c	ord L = 0.6 m	CCA770	59660		S51	59781	CT 🔲	СТ 📃	LPCT 📃
	L=2 m	CCA772	59661 📃		S52	59782	CT 🗖	СТ 📃	LPCT 📃
	L=4 m	CCA774	59662 📃		S53	59783	CT 🔲	СТ 📃	LPCT 🔲
Mounting plat	te	AMT840	59670	Transformer	T40	59683	СТ 🔲	СТ 📃	LPCT 📃
Working langu	age				T42	59684	CT 🗖	СТ 📃	LPCT 📃
Sepam series 40	EN/FR		59615 📃		T50	59784	CT 🗖	СТ 📃	LPCT 🔲
	EN/ES		59616 📃		T52	59785	CT 🔲	СТ 📃	LPCT 📃
Connectors				Motor	M41	59685	CT 📃	СТ 📃	LPCT 📃
Type Screw-type	CCA620 - 59668 a	nd CCA626	- 59656 📃	Generator	G40	59686	CT 🗖	СТ 📃	LPCT 🔤
Ring-lug type	CCA622 - 59669 a	nd CCA627	- 59657 📃				59630	59629	59631
							CCA630	CCA634	CCA670

Note: CCA630: 3 phase CT

CCA634: 3 phase CT + IO

modules, communication	on interra	ices and (core pa
Core balance CTs			Modu
Core balance CT, Ø 120 mm	CSH120	59635 📃	Input
Core balance CT, Ø 200 mm	CSH200	59636 📃	10 inpu
Interposing ring CT	CSH30	59634	10 inpu
Care halance CT interface	ACE000	50670	10

 Core balance CT interface
 ACE990
 59672

 Note: only one core balance CT can be added.

Warning: Using core balance CTs is incompatible with the CCA634.

Mar de la la compañía de la compañía

ore balance CTs

Modules					
Input / output modules	;				
10 inputs + 4 outputs, 24-	250 V DC			MES114	59646
10 inputs + 4 outputs, 110	-125 V DC / V A	C		MES114E	59651
10 inputs + 4 outputs, 220)-250 V DC / V A	.C		MES114F	59652
Note: the Sepam base u	nit has 4 outputs	; only one inpu	t/output mod	ule can be add	ed.
Remote modules				Connection	n cord
8 temperature sensor	ature sensor MET148-2 59641 L=0		L=0.6 m	CCA770 5	9660
module		<u> </u>	L=2m	CCA772 5	9661
			L=4 m	CCA774 5	9662
Note: the MET148-2 can Maximum of 2 modules p		ith applications	T, M and G.		
Analog output module	MSA141	59647 📃	L=0.6 m	CCA770	59660
			L=2 m	CCA772	59661
			L=4 m	CCA774	59662
Note: the MSA141 can b	e used with all t	he applications			
Note: the MSA141 can b Communication int		he applications			
		he applications		Connection	n cord
Communication int		he applications 59642	<u> </u>	Connection CCA612	n cord 59663
Communication int Modbus interfaces	erfaces		- · · · · · · · · · · · · · · · · · · ·		
Communication int Modbus interfaces 2-wire RS 485 interface	erfaces ACE949-2	59642	-	CCA612	59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface	ACE949-2 ACE959 ACE937	59642 59643 59644		CCA612 CCA612	59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface	ACE949-2 ACE959 ACE937	59642 59642 59643 59644 59644 1000 59640 59640 5000 59640 5000 5000 5000 5000 5000 5000 5000 5		CCA612 CCA612	59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface Multi-protocol interface	ACE949-2 ACE959 ACE937 ees (Modbus, D	59642 59642 59643 59644 59644 59644 59644 59723 597723 59723 59725 59775555555 59775555555555		CCA612 CCA612 CCA612	59663 59663 59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface Multi-protocol interface 2-wire RS 485 interface	ACE949-2 ACE959 ACE937 ACE937 ACE969TP-2 ACE969FO-2	59642 59642 59643 59644 59644 59644 59644 59723 597723 59723 59725 59775555555 59775555555555		CCA612 CCA612 CCA612 CCA612	59663 59663 59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface Multi-protocol interface 2-wire RS 485 interface Fiber optic interface	ACE949-2 ACE959 ACE937 ACE969TP-2 ACE969TP-2 ACE969FO-2 per application.	59642 59643 59643 59644 1000 59723 1000 59723 1000 59724 1000 59725 597555 597555 597555 597555555 59755555555		CCA612 CCA612 CCA612 CCA612	59663 59663 59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface Multi-protocol interface 2-wire RS 485 interface Fiber optic interface Note: only one interface	ACE949-2 ACE959 ACE937 ACE969TP-2 ACE969TP-2 ACE969FO-2 per application.	59642 59643 59643 59644 1000 59723 1000 59723 1000 59724 1000 59725 597555 597555 597555 597555555 59755555555		CCA612 CCA612 CCA612 CCA612	59663 59663 59663 59663
Communication int Modbus interfaces 2-wire RS 485 interface 4-wire RS 485 interface Fiber optic interface 2-wire RS 485 interface Fiber optic interface Note: only one interface TCP/IP interfaces (618	ACE949-2 ACE959 ACE937 ACE969TP-2 ACE969TP-2 ACE969FO-2 per application.	59642 59643 59644 NP3 or IEC 600 59723 59724 59724 59		CCA612 CCA612 CCA612 CCA612	59663 59663 59663 59663

 $\textit{Note:} Connection \ cords \ are \ included \ with \ the \ ACE850TP \ and \ ACE850FO \ interfaces.$

Note : only one interface per application.

Conne Туре

Sepam series 80

Ready-to-use configuration

Number of identical Sepam configurations ordered

This order form can be used to define a complete Sepam configuration. Check the boxes 🕅 or indicate the required quantities in the appropriate spaces according to your choices.

Sepam series 80 base unit, cartridge, connectors and application												
Base unit and U	МІ			Application	і Туре	B1 sen	sor		B2 sen	sor		
Base unit with mimic	-based UMI	SEP888	59705 📃	Substation	S80 59729 📄	СТ 📃	СТ 📃	LPCT				
Base unit with advar	iced UMI	SEP383	59704 📃		S81 59730 📄	CT 🔲	CT 📃	LPCT				
With lead seal	accessory (1)	AMT852	59639		S82 59731 📄	CT 📃	СТ 📃	LPCT				
Base unit without ba	sic UMI	SEP080	59703 📃		S84 59732	CT 📃	CT 📃	LPCT				
Remote advar	nced	DSM303	59608 📃	Transformer	T81 59733 📄	CT 🔲	CT 📃	LPCT				
UMI module (c	compulsory wit	h SEP080)			T82 59734 📃	CT 🔲	CT 📃	LPCT				-
Connection co	ord L = 0.6 m	CCA770	59660 📃		T87 59735 📃	СТ 🔲	СТ 📃		CT 🔲	СТ 📃		-
	L=2 m	CCA772	59661	Motor	M81 59736	СТ 🔲	СТ 📃	LPCT				
	L=4 m	CCA774	59662 📃		M87 59737	CT 🔲	CT 📃	LPCT	CT 🔲	СТ 📃	LPCT	
Mounting plate	9	AMT880	59706 📃		M88 59738	СТ 🔲	СТ 📃		CT 🔲	СТ 🔲		
Note: 8 mounting cli	ps included			Generator	G82 59739 🔳	СТ 🔲	СТ 📃	LPCT				
Memory cartridg	je				G87 59741 📃	CT 🔲	CT 📃	LPCT	CT 🔲	СТ 📃	LPCT	
Memory cartridge		MMS020	59707 📃		G88 59742	СТ 🔲	СТ 📃		CT 🔲	СТ 🔲		
Logipam option		SFT080	59711 📃	Busbar	B80 59743 📄	СТ 🔲	СТ 📃	LPCT				
Note: option require	d to use Logip	am program.			B83 59744 📃	СТ 🔲	СТ 📃					VT 📃
Working language	ge			Capacitor	C86 59745	СТ 🔲	СТ 📃	LPCT	CT 🔲	СТ 📃		
Sepam series 80	EN/FR		59709 📃			59630	59629	59702	59630	59629	59702	59632
	EN/ES		59710			CCA630	CCA634	1 CCA671	CCA630	CCA634	CCA671	CCT640
Connectors												

Note: CCA630: 3 phase CT CCA634: 3 phase CT + IO

type (1) Can be used only with an advance UMI

Ring-lug

Modules, communication interf	aces and core balance C
-------------------------------	-------------------------

CCA622

59668

59669

Core balance CTs

Core balance CT interface	ACE990	59672	
Interposing ring CT	CSH30	59634	
Core balance CT, Ø 200 mm	CSH200	59636	
Core balance CT, Ø 120 mm	CSH120	59635	

Screw-type CCA620

Note: the total number of core balance CTs cannot exceed 2. Warning: Using core balance CTs is incompatible with the CCA634

Ts

Modules Input / output modules 14 inputs (24-250 V DC) + 6 outputs MES120 59715 14 inputs (220-250 V DC) + 6 outputs MES120G 59716 14 inputs (110-125 V DC) + 6 outputs MES120H 59722 Note: the Sepam base unit comes with 5 outputs; 3 input/output modules can be added. **Remote modules** Connection cord 8 temperature sensor MET148-2 L=0.6 m CCA770 59660 59641 module L = 2 m CCA772 59661 L=4 m CCA774 59662 Note: the MET148-2 can be used only with applications T, M, G and C. Maximum of 2 MET 148-2 modules per application Analog output module **MSA141** 59647 L=0.6 m CCA770 59660 L = 2 m CCA772 59661 L=4 m CCA774 59662 | Note: the MSA141 can be used with all the applications. Synchro-check module MCS025 59712 Mounting plate AMT840 59670 Note: the MCS025 can be used only with applications S, B, G and T. Comes with connection cord CCA785 and voltage connector CCT640. **Communication interfaces** Modbus interfaces Connection cord 2-wire RS 485 interface 59642 59663 ACE949-2 CCA612 4-wire RS 485 interface ACE959 59643 CCA612 59663 Fiber optic interface ACE937 59644 CCA612 59663 Multi-protocol interfaces (Modbus, DNP3 or IEC 60870-5-103) 2-wire RS 485 interface ACE969TP-2 59723 CCA612 59663 ACE969FO-2 59724 CCA612 Fiber optic interface 59663 TCP/IP interfaces (61850 and Modbus) TCP/IP firmware option 59754 RJ45 interface ACE850TP 59658 ACE850FO Fiber optic interface 59659 Note: the total number of communication interfaces cannot exceed 2. Note : A specific firmware is necessary to use the TCP/IP interfaces.

Note : Connection cords are included with the ACE850TP and ACE850FO interfaces.

Note : only one interface ACE850TP or ACE850FO per Sepam application.

Sepam 100 LD

When ordering Sepam 100 LD, stabilization plate and/or surge limiters, please enclose a photocopy of this page with your order, filling in the requested quantities in the spaces provided \square and ticking off the boxes $\boxed{}$ to indicate your choices.

Quantity		
Rated frequency	50 Hz	
	60 Hz	[
Version	Single-phase	[
	Three-phase	[
Auxiliary power supply	24 to 30 V DC	[
	48 to 125 V DC	[
	220 to 250 V DC	
	100 to 127 V AC	
	220 to 240 V AC	[
Stabilization plate	•	
Resistance	68 W - 280 W	
	150 W - 280 W	
	270 W - 280 W	
	470 W - 180 W	
	680 W - 180 W	
Surge limiters		
Single unit		
Triple unit		

Sepam 100 MI

Box \boxtimes corresponds to none priced functions.

Sepam 100 MI	
Туре	Quantity
Sepam 100M I-X00	
Sepam 100M I-X01	
Sepam 100M I-X02	
Sepam 100M I-X03	
Sepam 100M I-X10	
Sepam 100M I-X11	
Sepam 100M I-X12	
Sepam 100M I-X13	
Sepam 100M I-X14	
Sepam 100M I-X15	
Sepam 100M I-X16	
Sepam 100M I-X17	
Sepam 100M I-X18	
Sepam 100M I-X22	
Supply voltage	
24/30 V AC/DC	
48/127 V AC/DC	

Sepam accessories and spare parts

Check the boxes or indicate the required quantities in the appropriate spaces according to your choices.

Mounting plate AMT840 59670 Sepam series 20 and Sepam series 40 with advanced UMI Lead seal accessory AMT852 59639 Sepam series 30 AMT852 59639 Mounting plate AMT820 59699 Software tools AMT820 59699 Sepam PC software: SFT2841 and SFT2826 SFT2841 CD 59679 IC CD-ROM without connection cord CCA783 CCA783 59664 USB/RS223 Liferafeae (CCA783 cord must be ordered separately) TSXCUS8232 Logipam SFT2885 programming software CD SFT2885 59727 EC 61850 configuration software CD SFT850 59726 Input / ordput modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24:250 VDC MES114E 59646 10 inputs + 4 outputs, 22:220:250 VDC / VAC MES114E 59647 10 inputs + 4 outputs, 22:250 VDC MES1200 59715 14 inputs + 6 outputs, 24:250 VDC MES1200 59715 14 inputs + 6 outputs, 24:250 VDC MES1200 59712 CAT72 59661 14 inputs + 6 outputs, 222	according to your choices.			
Mounting plate AMT840 59670 Sepam series 20 and Sepam series 40 with advanced UMI Lead seal accessory AMT852 59639 Ised seal accessory AMT880 59706 Estaming plate AMT820 59699 Estaming plate AMT820 59699 Estaming plate AMT820 59679 Commetion cond CCA783 59664 USB/RS221 Underface (CCA783) FC connection cond CCA783 59664 USB/RS221 Underface (CCA783 cord must be ordered separately) FSCUSE222 Logipam SFT2885 programming software CD SFT2805 59727 EC 61850 configuration software CD SFT2805 59726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 120-250 VDC MES114E 59661 10 inputs + 4 outputs, 220-250 VDC MES114E 59652 Sepam series 80 Inputs + 6 outputs, 24-250 VDC MES120 59715 I inputs + 6 outputs, 110-125 VDC MES120 59716 I mputs + 6 outputs, 24-250 VDC MES120 59716 I mputs + 6 outputs, 24-250 VDC MES120 59712 I inputs + 6 outputs, 24-250 VDC MES120 59712 I inputs + 6 outputs, 24-250 VDC MES120 <t< td=""><td>Mounting accessories</td><td></td><td></td><td></td></t<>	Mounting accessories			
Sepam series 20 and Sepam series 40 with advanced UMI Lead seal accessory AMT852 \$9639 Mounting plate AMT820 \$9639 Software tools Software tools \$9699 Software tools Software tools \$9699 Commetion cord CCA783 \$9664 USB/RSS23 interface (CCA783 cord must be ordered separately) TSXCUSE322 Logipam SFT2885 programming software CD SFT2885 \$9727 EC 61880 configuration software CD SFT2885 \$9727 EC 61880 configuration software CD SFT2885 \$9726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 V DC MES114 \$9646 10 inputs + 4 outputs, 24-250 V DC MES120 \$9715 14 inputs + 6 outputs, 24-250 V DC MES120H \$9722 14 inputs + 6 outputs, 24-250 V DC MES120H \$9722 14 inputs + 6 outputs, 24-250 V DC MES120H \$9722 14 inputs + 6 outputs, 24-250 V DC MES120H \$9722 14 inputs + 6 outputs, 24-250 V DC MES120H \$9722 14 inputs + 6 outputs, 20-250 V DC MES120H <	Sepam series 20, Sepam series 40 or MCS025	:		
Lead seal accessory AMT852 59639 Sepam Series 80 MMT880 59706 Blanking plate AMT880 59706 Blanking plate AMT820 59699 Software tools Sepam PC Software: SFT2841 and SFT2826 SFT2841 CD 59679 PC connection cord CCA783 59664 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB232 Legipam SFT2885 programming software CD SFT2805 59727 EC 61850 configuration software CD SFT850 59726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 202-250 V DC /VAC MES114E 59646 10 inputs + 4 outputs, 202-250 V DC /VAC MES120 59715 14 inputs + 6 outputs, 10-125 V DC MES120 59715 14 inputs + 6 outputs, 10-125 V DC MES120 59716 607722 14 inputs + 6 outputs, 202-250 V DC /VAC MES120 59717 14 inputs + 6 outputs, 202-250 V DC MES120 59712 14 inputs + 6 outputs, 202-250 V DC MES120 59712 Remote module connection cord CA770 59661 60772 59641 <td>Mounting plate</td> <td>AMT840</td> <td>59670</td> <td></td>	Mounting plate	AMT840	59670	
Sepam series 80 AMT880 \$9706 Blanking plate AMT880 \$9706 Blanking plate AMT820 \$9699 Sepam PC software: SFT2841 and SFT2826 SFT2841 CD \$9679 I CD-ROM without connection cord CCA783 S6664 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB232 Lögipam SFT2885 programming software CD SFT2885 \$9727 EC 61850 configuration software CD SFT2885 \$9727 EC 61850 configuration software CD SFT2885 \$9727 EC 61850 configuration software CD SFT2885 \$9726 Input + 4 outputs, 24-260 VDC MES114 \$9646 10 inputs + 4 outputs, 24-250 VDC MES114 \$9652 S9716 I I inputs + 6 outputs, 24-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC	Sepam series 20 and Sepam series 40 with ad			
Mounting plate AMT800 \$97706 Blanking plate AMT820 \$99699 Software tools Sepam PC software: SFT2841 and SFT2826 SFT2841 CD \$96779 Connection cord CCA783 \$9664 \$97766 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB2322 \$97276 Logipam SFT2885 programming software CD SFT2885 \$97276 EC 1830: Configuration software CD SFT2885 \$97276 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 220-250 V DC MES114 \$99646 10 inputs + 4 outputs, 220-250 V DC / VAC MES120 \$97715 \$97726 Sepam series 80 14 inputs + 6 outputs, 24-250 V DC MES120 \$97715 14 inputs + 6 outputs, 24-250 V DC MES120 \$97716 14 inputs + 6 outputs, 220-250 V DC MES120 \$97717 14 inputs + 6 outputs, 220-250 V DC MES120 \$97712 Remote advanced UMI module DSM303 \$96648 Synchro-check module (including connection cord MCS025 \$97712 CCA772 \$99660		AMT852	59639	
Blanking plate AMT820 \$9699 Software tools Sepam PC software: SF12841 and SF12826 SF12841 CD \$99679 ICD-ROM Without connection cord CCA783 CCA783 \$99644 USB/RS232 Logipam SF12885 programming software CD SF12885 \$9727 EC 61850 configuration software CD SF12885 \$9727 EC 61850 configuration software CD SF12885 \$9727 EC 61850 configuration software CD SF1880 \$99726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 V DC / VAC MES114 \$99646 10 inputs + 4 outputs, 24-250 V DC / VAC MES114 \$99647 1 14 inputs + 6 outputs, 22-250 V DC / VAC MES120 \$9715 1 14 inputs + 6 outputs, 22-250 V DC MES120 \$9716 1 Remote modules and cords 8 1 \$9641 1 Analog outputs, 10-125 V DC MES120 \$9715 1 Analog outputs, 10-125 V DC MES120 \$9712 1 Analog output, 10-125 V DC MES120 \$9712 1	-			
Software tools Sepam PC software: SFT2841 and SFT2826 SFT2841 CD \$9979 PC connection cord CCA783 \$9664 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB2322 Logipam SFT2885 programming software CD SFT2865 \$9727 EC 61850 configuration software CD SFT350 \$9726 Input / output modules Sepam series 20 and series 40 10 inputs 4 outputs, 2120 S0 VDC MES114 \$99646 10 inputs 4 outputs, 2120 S0 VDC MES114E \$99552 Sepam series 80 14 inputs + 4 outputs, 220-250 VDC MES120 \$97715 14 inputs + 6 outputs, 24-250 VDC MES120 \$97716 \$99722 14 inputs + 6 outputs, 220-250 VDC MES120 \$99716 14 inputs + 6 outputs, 220-250 VDC MES120 \$99716 \$99641 Analgo quipt module DSM303 \$99608 \$99647 Remote advanced UMI module DSM303 \$99608 \$99647 Synchro-check module connection cord L = 0.6 m CCA770 \$99660 Remote advanced UMI module DSM303 \$99683 \$99665 \$99712 CO				
Sepam PC software: SFT2841 and SFT2826 SFT2841 CD \$9879 IC CD-ROM without connection cord CCA783 \$98664 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB2322 Logipam SFT2885 programming software CD SFT2895 \$97276 Input / output modules Sepam series 20 and series 40 10 inputs 4 outputs, 2120 VDC MES114 \$99464 10 inputs 4 outputs, 2120 VDC MES114 \$99552 Sepam series 80 11 inputs 4 outputs, 220-250 VDC MES114 \$99562 Sepam series 80 14 inputs + 6 outputs, 220-250 VDC MES120 \$97715 14 inputs + 6 outputs, 220-250 VDC MES120 \$97712 14 inputs + 6 outputs, 220-250 VDC MES120 \$97712 14 inputs + 6 outputs, 220-250 VDC MES120 \$97712 14 inputs + 6 outputs, 210-250 VDC MES120 \$97712 14 inputs + 6 outputs, 220-250 VDC MES120 \$97712 Remote andouels and and cords \$97712 14 inputs + 6 outputs, 210-250 VDC MES120 \$97712 Remote module connection cord L = 0 m CCA770 \$99660 \$97712 \$27785 \$27712 \$278661		AMT820	59699	
(1 CD-ROM without connection cord CCA783) CCA783 \$9664 DSB/R5222 interface (CCA783 cord must be ordered separately) TSXCUSB232 Logipam SFT2885 programming software CD SFT2885 \$9727 IEC 61850 configuration software CD SFT850 \$9726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 VDC MES114 \$9646 10 inputs + 4 outputs, 24-250 VDC MES114E \$99651 10 inputs + 4 outputs, 220-250 VDC MES114E \$99715 14 inputs + 6 outputs, 220-250 VDC MES120 \$97115 14 inputs + 6 outputs, 220-250 VDC MES120 \$97115 14 inputs + 6 outputs, 220-250 VDC MES1206 \$99716 Remote modules and cords 8 temperature sensor module MET148-2 \$9641 \$98471 Remote advanced UMI module DSM303 \$98608 \$9712 Remote module connection cord L = 0. 6m CCA770 \$9661 \$99642 \$9712 Synchro-check module connection cord L = 2m CCA772 \$99642 \$99642 \$99642 \$99644 \$97252 \$99642<				
PC connection cord CCA783 \$9664 USB/RS232 interface (CCA783 cord must be ordered separately) TSXCUSB232 Logipam SFT2885 programming software CD SFT350 \$9727 EC 61850 configuration software CD SFT350 \$9728 Input / output modules Sepam series 20 and series 40 10 inputs 4 outputs, 242050 VDC MES114 \$9646 10 inputs 4 outputs, 242050 VDC MES114F \$99552 Sepam series 80 14 inputs + 6 outputs, 24250 VDC MES120 \$9715 14 inputs + 6 outputs, 24250 VDC MES120 \$9715 \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9722 14 inputs + 6 outputs, 220-250 VDC MES120H \$9772		SFT2841 CD	59679	
TSXCUSB232 Logipam SFT2885 programming software CD SFT2885 S9727 IEC 61850 configuration software CD SFT2885 S9727 ID inputs + 4 outputs, 24-250 V DC MES114 S9662 Sepam series 80 14 inputs + 6 outputs, 220-250 V DC MES120 S9715 I a inputs + 6 outputs, 220-250 V DC MES120 S9712 It inputs + 6 outputs, 220-250 V DC MES120 S9712 It inputs + 6 outputs, 220-250 V DC MES120 S9712 It inputs + 6 outputs, 220-250 V DC MES120 S9712 It inputs + 6 outputs, 220-250 V DC MES120 S9712 It inputs + 6 outpu	<u>,</u>	CC 4783	59664	
Logipam SFT2885 programming software CD SFT2885 59727 IEC 61850 configuration software CD SFT850 59726 Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 V DC MES114 59646 10 inputs + 4 outputs, 24-250 V DC MES114 59651 11 inputs + 4 outputs, 220-250 V DC / VAC MES114F 59652 Sepam series 80 14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 24-250 V DC MES120 59716 14 inputs + 6 outputs, 24-250 V DC MES120 59716 17 17 14 inputs + 6 outputs, 24-250 V DC MES120 59717 14 inputs + 6 outputs, 220-250 V DC MES120 59716 17 18 18 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19 14 19<				
Comparison ratio Code Sepan series 20 and series 40 10 inputs +4 outputs, 24-250 V DC MES114 59646 10 inputs +4 outputs, 220-250 V DC / VAC MES114E 59651 10 inputs +4 outputs, 220-250 V DC / VAC MES114F 59652 Sepan series 80 11 11 inputs +6 outputs, 220-250 V DC / VAC MES120H 59715 14 inputs +6 outputs, 220-250 V DC MES120H 59722 14 inputs +6 outputs, 220-250 V DC MES120H 59722 14 inputs +6 outputs, 220-250 V DC MES120H 59722 14 inputs +6 outputs, 220-250 V DC MES120H 597415 14 inputs +6 outputs, 220-250 V DC MES120H 597412 59641 Remote modules and cords 8 1000000000000000000000000000000000000				
Input / output modules Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 V DC MES114 59646 10 inputs + 4 outputs, 220-250 V DC / VAC MES114E 59651 10 inputs + 4 outputs, 220-250 V DC / VAC MES114F 59652 Sepam series 80 1 1 1 14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 220-250 V DC MES120G 59716 Remote modules and cords 8 1 1 8 temperature sensor module MET148-2 59641 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 CCA785 59665 1 Remote module connection cord L = 2 m CCA772 59661 Remote module connection cord L = 2 m CCA774 59662 Synchro-check module connection cord L = 2 m CCA775 596642 L = 2 m (spare parts) Communication interface 59665 1 Connection cord, L = 3 m CCA774 59664 1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Sepam series 20 and series 40 10 inputs + 4 outputs, 24-250 V DC MES114 59646 10 inputs + 4 outputs, 110-125 V DC / VAC MES114E 59652 Sepam series 80 MES120 59715 14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 220-250 V DC MES120 59715 14 inputs + 6 outputs, 220-250 V DC MES120 59716 Remote advances 1200 59716 59716 Remote advances 141 59647 59717 Analog output module MET148-2 59641 Analog output module MES120 59712 CCA785 Semote advanced UMI module DSM303 59608 Synchro-check module connection cord L = 2 m CCA770 59660 59712 Remote module connection cord L = 4 m CCA771 59661 59712 Communication interface (without CCA612) ACE949-2 59642 59643 Paire RS 485 Modbus interface (without CCA612) ACE969 59643 59663 Fiber optic Modbus interface (without CCA612) ACE969F0-2 59724 <t< td=""><td></td><td>CD SF1850</td><td>59720</td><td></td></t<>		CD SF1850	59720	
10 inputs + 4 outputs, 24-250 V DC MES114 59646 10 inputs + 4 outputs, 110-125 V DC / V AC MES114E 59651 10 inputs + 4 outputs, 220-250 V DC / V AC MES114F 59652 Sepam series 80 14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 220-250 V DC MES120 59716 59716 Remote modules and cords Remote modules and cords 8 8 temperature sensor module MET148-2 59641 Analog output module MSA141 59667 Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 2 m CCA772 59661 Remote module connection cord L = 4 m CCA773 59662 Synchro-check module connection cord L = 4 m CCA774 59662 Synchro-check module connection cord L = 2 m CCA774 596642 A-wire RS 485 Modbus interface (without CCA612) ACE949-2 596442 A-wire RS 485 Modbus interface (without CCA612) ACE969 59643 Fiber optic Modbus interface (without CCA612) ACE9697-2 59724				
10 inputs + 4 outputs, 110-125 V DC / VAC MES114E 59651 10 inputs + 4 outputs, 220-250 V DC / VAC MES114F 59652 Sepam series 80 MES120 59715 14 inputs + 6 outputs, 110-125 V DC MES120H 59722 14 inputs + 6 outputs, 120-125 V DC MES120H 59722 14 inputs + 6 outputs, 120-125 V DC MES120G 59716 Remote advanced UMI science MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 596608 Synchro-check module (including connection cord CCA785) MCCA772 59661 Remote module connection cord L = 0.6 m CCA771 59662 Synchro-check module connection cord L = 4 m CCA772 59661 Remote module connection cord L = 4 m CCA773 59642 -wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 -wire RS 485 Modbus interface (without CCA612) ACE969FD-2 59724 Connection cord, L = 3 m CCA612 ACE969FD-2 59724 Fiber optic multi-protocol interface (without CCA612) <td< td=""><td>•</td><td>MEGAAA</td><td>59646</td><td></td></td<>	•	MEGAAA	59646	
Initiation of the second se				
Sepam series 80 14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 220-250 V DC MES120G 59716 Remote modules and cords 8 8 temperature sensor module MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 CCA785 S9660 Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 2 m CCA772 59661 Remote module connection cord L = 4 m CCA774 59662 Synchro-check module connection cord L = 4 m CCA774 59665 S Communication interfaces 2 2 59642 4 4-wire RS 485 Modbus interface (without CCA612) ACE999 59643 59723 Fiber optic Modbus interface (without CCA612) ACE969TP-2 59724 59724 Connection cord, L = 3 m CCA612 59663 59659 50663 RJ45 TCP/IP interface (with CCA614) ACE8050FO 59659 50663 59659 50663				
14 inputs + 6 outputs, 24-250 V DC MES120 59715 14 inputs + 6 outputs, 110-125 V DC MES120H 59722 14 inputs + 6 outputs, 220-250 V DC MES120G 59716 Remote modules and cords 8 temperature sensor module MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord CCA775 59660 Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 4 m CCA772 59661 Remote module connection cord L = 4 m CCA775 59665 L = 2 m (spare parts) Cearas 59665 Communication interfaces 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 Avering X 485 Modbus interface (without CCA612) ACE949-2 59642 Avering X 485 Modbus interface (without CCA612) ACE949-2 59723 Fiber optic multi-protocol interface (without CCA612) ACE969FD-2 59	· · · ·	MES114F	22022	
Inipute 6 outputs, 110-125 V DC MES120H 59722 14 inputs + 6 outputs, 220-250 V DC MES120G 59716 Remote modules and cords 8 8 temperature sensor module MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 CA785) Semote module connection cord L = 0.6 m CCA770 59661 Remote module connection cord L = 4 m CCA774 59665 L = 2 m (spare parts) Sepan communication interfaces 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE949-2 59643 Fiber optic Modbus interface (without CCA612) ACE969FO-2 59723 Fiber optic Modbus interface (without CCA612) ACE969FO-2 59723 Fiber optic Modbus interface (without CCA612) ACE969FO-2 59751 Connection cord, L = 3 m CCA612 59665 Connection cord, L = 3 m, for TCP/IP interfaces CCA612 59658 Fiber optic TCP/IP Interface (with CCA614) ACE80		ME 0100	E071E	
14 inputs + 6 outputs, 220-250 V DC MES120G \$9716 Remote modules and cords 8 8 temperature sensor module MET148-2 \$9641 Analog output module MSA141 \$9647 Remote advanced UMI module DSM303 \$9608 Synchro-check module (including connection cord CCA785) MCS025 \$9712 Remote module connection cord L = 0.6 m CCA770 \$9660 Remote module connection cord L = 2 m CCA774 \$9662 Synchro-check module connection cord CCA775 \$9665 L = 2 m (spare parts) CCA785 \$9665 Communication interfaces				
Remote modules and cords 8 temperature sensor module MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 CCA785) MCS025 59712 Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 4 m CCA7714 59662 Synchro-check module connection cord CCA785 59665 L = 2 m (spare parts) CCA785 596642 Awire RS 485 Modbus interface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE9697 59643 Fiber optic Modbus interface (without CCA612) ACE9697-2 59723 Fiber optic Modbus interface (without CCA612) ACE9697-2 59724 Connection cord, L = 3 m CCA612 59665 R345 TCP/IP interface (with CCA614) ACE8050F 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 R 232 / RS 485 converter ACE909-2 59648 RS 232 / RS 485 converter ACE909-2				
8 temperature sensor module MET148-2 59641 Analog output module MSA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 2 m CCA7714 59661 Remote module connection cord L = 4 m CCA774 59662 Synchro-check module connection cord CCA785 59665 L = 2 m (spare parts) Communication interfaces 2 Avire RS 485 Modbus interface (without CCA612) ACE949-2 59642 Avire RS 485 Modbus interface (without CCA612) ACE937 59643 Fiber optic Modbus interface (without CCA612) ACE969FD-2 59723 Fiber optic multi-protocol interface (without CCA612) ACE969FO-2 59724 Connection cord, L = 3 m CCA612 59663 RJ35 TCP/IP interface (with CCA614) ACE850FD 59658 Fiber optic TCP/IP interface (with CCA614) ACE850FO 59659 Connection cord, L = 3 m CCA612 59648 R 232 / RS 485 interface (DC) ACE800FO		MES120G	59/16	_
Analog output module MXA141 59647 Remote advanced UMI module DSM303 59608 Synchro-check module (including connection cord MCS025 59712 CCA785) Remote module connection cord L = 0.6 m CCA770 59660 Remote module connection cord L = 4 m CCA772 59661 Remote module connection cord L = 4 m CCA774 59665 L = 2 m (spare parts) CCA785 59665 Communication interfaces 2 Synchro-check module connection cord CCA785 Sepam communication interfaces 2 Synchro-check module sinterface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE959 59643 59663 Fiber optic Modbus interface (without CCA612) ACE969F0-2 59723 59724 Connection cord, L = 3 m CCA612 59663 50663 50663 RJ45 TCP/IP interface (with CCA614) ACE850FP 59663 50663 50663 50663 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 50663 50663 50663 50663 50663 50663 50653 50663 <td></td> <td></td> <td></td> <td></td>				
NumberNumberRemote advanced UMI moduleDSM303\$9608Synchro-check module (including connection cord CCA785)MCS025\$9712Remote module connection cord L = 0.6 mCCA770\$9660Remote module connection cord L = 2 mCCA772\$9661Remote module connection cord L = 4 mCCA774\$9662Synchro-check module connection cordCCA785\$9665L = 2 m (spare parts)Communication interfacesCommunication interfaces2-wire RS 485 Modbus interface (without CCA612)ACE949-2\$96424-wire RS 485 Modbus interface (without CCA612)ACE937\$9644RS 485 multi-protocol 2-wire interface (without CCA612)ACE937\$9644RS 485 multi-protocol 1-wire interface (without CCA612)ACE969FD-2\$9723Fiber optic Modbus interface (without CCA612)ACE969FD-2\$9724Connection cord, L = 3 mCCA612\$9663RJ45 TCP/IP interface (with CCA614)ACE850FD\$9658Fiber optic TCP/IP interface (with CCA614)ACE80FD\$9659Connection cord, L = 3 m, for TCP/IP interfacesCCA614\$9751ConvertersRS 485 interface (AC)ACE919CC\$9648RS 485 interface (DC)ACE919CC\$9650Ethernet gatewayEGX100EGX100MGEthernet configuration kit for ECI850TCSEAK0100Sepam IEC 61850 server (with one ECI850 cat. no.ECI850\$9638S9633 and two surge arresters cat. no. 16595)Ethernet configuration kit for ECI850TCSEAK0100 <t< td=""><td>8 temperature sensor module</td><td></td><td></td><td></td></t<>	8 temperature sensor module			
Number of the field of the f	Analog output module	MSA141		
ConstructionInterfaceInterfaceRemote module connection cord L = 0.6 mCCA77059660Remote module connection cord L = 4 mCCA771459662Synchro-check module connection cordCCA78559665L = 2 m (spare parts)Communication interfaces2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE969TP-259723Fiber optic Modbus interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259643RS 232 / RS 485 interface (AC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CA59638Ethernet gatewayEGX100EGX100MGEthernet configuration kit for ECI850 cat. no.ECI85059638S9653 and two surge arresters cat. no. 16595)TCSEAK0100TCSEAK0100Core balance CT.g 200 mmCSH20059636Core balance CT.g 200 mmCore balance CT scCore S963059634Core balance CT interfaceCore balance CT interfaceACE99059634Core balance CT interfaceACE990 <t< td=""><td>Remote advanced UMI module</td><td>DSM303</td><td></td><td></td></t<>	Remote advanced UMI module	DSM303		
Remote module connection cord L = 0.6 mCCA77059660Remote module connection cord L = 2 mCCA77259661Remote module connection cord L = 4 mCCA77459662Synchro-check module connection cordCCA78559665L = 2 m (spare parts)Communication accessoriesSepam communication interfaces2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE969TP-259723Fiber optic Modbus interface (without CCA612)ACE969FD-259724Connection cord, L = 3 mCCA61259663RJ 45 TCP/IP interface (with CCA614)ACE850FD59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259648RS 232 / RS 485 converterACE909-259649RS 485 / RS 485 interface (DC)RS 485 / RS 485 interface (DC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CA59650Ethernet gatewayEGX100EGX100MGEthernet webserverEGX300EGX300MGSepam IEC 61860 server (with one ECI850 cat. no.ECI8505963859653 and two surge arresters cat. no. 16595)TCSEAK0100Core balance CTsCore balance CT Ø 120 mmCSH20059636Core balance CT Ø 200 mmCSH20059636Core balance CT interfaceACE99059634Core balance CT interface<		MCS025	59712	
Remote module connection cord L = 2 mCCA77259661Remote module connection cord L = 4 mCCA77259662Synchro-check module connection cordCCA78559665L = 2 m (spare parts)Communication accessoriesSepam communication interfaces2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE93759644RS 485 multi-protocol 1-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FD-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FD59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259648RS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet webserverEGX300EGX300MGSepam IEC 61850 server (with one EC1850 cat. no.EC185059638Sy653 and two surge arresters cat. no. 16595)Ethernet configuration kit for EC1850TCSEAK0100Core balance CT sCore balance CT sCore balance CT sCore balance CT sortCSH3059634Core balance CT of 200 mmCSH20059635 <t< td=""><td></td><td>004770</td><td>59660</td><td></td></t<>		004770	59660	
Remote module connection cord L = 4 m CCA774 59662 Synchro-check module connection cord CCA785 59665 L = 2 m (spare parts) Communication accessories Sepam communication interfaces 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE959 59644 Fiber optic Modbus interface (without CCA612) ACE937 59644 RS 485 multi-protocol interface (without CCA612) ACE969TP-2 59723 Fiber optic multi-protocol interface (without CCA612) ACE969FD-2 59724 Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850FD 59658 Fiber optic TCP/IP interface (with CCA614) ACE850FD 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (DC) ACE919CA 59649 RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet webserver EGX100 EGX100MG Sepam IEC 61850 server (with one ECl850 cat. no. ECl850 596				
Synchro-check module connection cord CCA785 59665 L = 2 m (spare parts) CCA785 59665 Communication accessories Sepam communication interfaces 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE959 59643 Fiber optic Modbus interface (without CCA612) ACE969 59644 RS 485 multi-protocol 2-wire interface (without CCA612) ACE969FD-2 59723 Fiber optic multi-protocol interface (without CCA612) ACE969FD-2 59724 Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850TP 59658 Fiber optic TCP/IP interface (with CCA614) ACE800FO 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919C 59649 S RS 485 / RS 485 interface (DC) ACE919C 59649 S Ethernet webserver EGX100 EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG S				
L = 2 m (spare parts) Communication interfaces 2-wire RS 485 Modbus interface (without CCA612) ACE949-2 59642 4-wire RS 485 Modbus interface (without CCA612) ACE959 59643 Fiber optic Modbus interface (without CCA612) ACE969FD-2 59723 Fiber optic multi-protocol 2-wire interface (without CCA612) ACE969FD-2 59724 Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850FD 59658 Fiber optic TCP/IP interface (with CCA614) ACE80FD 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CA 59650 Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepan IEC 61850 server (with one EC1850 cat. no. EC1850 59638 S9653 and two surge arresters cat. no. 16595) Ethernet configuration kit for EC1850 TCSEAK0100 Core balance CTs Core balance CTS Core balance CT, Ø 200 mm CSH200 59634 Core balance CT, Ø 200 mm CSH20				
Communication accessories2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE93759644RS 485 multi-protocol 2-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (DC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet gatewayEGX100EGX300MGSepam IEC 61850 server (with one EC1850 cat. no.EC18505963859653 and two surge arresters cat. no. 16595)Ethernet configuration kit for EC1850TCSEAK0100Core balance CT, Ø 120 mmCSH12059636Core balance CT, Ø 200 mmCSH20059634Core balance CT, Ø 200 mmCSH20059634Core balance CT interfaceACE99059672Accessories for phase-current sensors (LPCT)F		CCA785	59665	
Sepam communication interfaces2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE93759644RS 485 multi-protocol 2-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (AC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet webserverEGX300EGX300MGSepam IEC 61850 server (with one ECI850 cat. no.EC18505963859653 and two surge arresters cat. no. 16595)Ethernet configuration kit for ECI850TCSEAK0100Core balance CT, Ø 120 mmCSH12059635Core balance CT, Ø 200 mmCore balance CT, Ø 200 mmCSH20059634Core balance CT interfaceACCe99059634Core balance CT interfaceACE99059634Core balance CT interfaceACE99059672Accessories for phase-current sensors (LPCT)				
2-wire RS 485 Modbus interface (without CCA612)ACE949-2596424-wire RS 485 Modbus interface (without CCA612)ACE95959643Fiber optic Modbus interface (without CCA612)ACE93759644RS 485 multi-protocol 2-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersTACE909-259648RS 485 / RS 485 interface (AC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CA59649Ethernet gatewayEGX100EGX100MGEthernet gatewayEGX300EGX300MGSepam IEC 61850 server (with one EC1850 cat. no.EC185059638S9653 and two surge arresters cat. no. 16595)TCSEAK0100Core balance CT, Ø 120 mmCore balance CT, Ø 120 mmCSH12059636Interposing ring CTCore balance CT interfaceACE99059634Core balance CT interfac				
4-wire RS 485 Modbus interface (without CCA612) ACE959 59643 Fiber optic Modbus interface (without CCA612) ACE937 59644 RS 485 multi-protocol 2-wire interface (without CCA612) ACE969TP-2 59723 Fiber optic multi-protocol 1-wire interface (without CCA612) ACE969FO-2 59724 Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850TP 59658 Fiber optic TCP/IP interface (with CCA614) ACE850FO 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CC 59649 RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG EdX100MG Ethernet webserver EGX300 EGX300MG Sepam IEC 61850 server (with one EC1850 cat. no. EC1850 59638 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 59633 596335 506630 596335 5		ACE949-2	59642	
Fiber optic Modbus interface (without CCA612)ACE93759644RS 485 multi-protocol 2-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850FD59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersRS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (DC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet gatewayEGX300EGX300MGSepam IEC 61850 server (with one ECI850 cat. no.5963859653 and two surge arresters cat. no. 16595)Ethernet configuration kit for ECI850TCSEAK0100Core balance CT, Ø 120 mmCSH12059636Core balance CT, Ø 200 mmCSH20059634Core balance CT interfaceACE99059632Accessories for phase-current sensors (LPCT)ACE900			59643	
RS 485 multi-protocol 2-wire interface (without CCA612)ACE969TP-259723Fiber optic multi-protocol interface (without CCA612)ACE969FO-259724Connection cord, L = 3 mCCA61259663RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersTACE909-259648RS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (AC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet gatewayEGX300EGX300MGSepam IEC 61850 server (with one EC1850 cat. no.EC185059638S9653 and two surge arresters cat. no. 16595)TCSEAK0100Core balance CTSCore balance CT, Ø 120 mmCSH12059636Interposing ring CTCore balance CT, Ø 200 mmCSH20059634Core balance CT interfaceACE99059672ACCe99059672Accessories for phase-current sensors (LPCT)Accessories for phase-current sensors (LPCT)			59644	
Fiber optic multi-protocol interface (without CCA612) ACE969FO-2 59724 Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850FD 59658 Fiber optic TCP/IP interface (with CCA614) ACE850FO 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG Ethernet gateway EGX300 EGX300MG Sepan IEC 61850 server (with one ECI850 cat. no. ECI850 59638 S9653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECI850 TCSEAK0100 Core balance CTS Core balance CTS Core balance CT, Ø 120 mm CSH120 59636 Core balance CT, Ø 200 mm CSH200 59634 Core balance CT interface ACE990 59632 Accessories for phase-current sensors (LPCT) Core balance CT Core balance CT Core balance CT			59723	
Connection cord, L = 3 m CCA612 59663 RJ45 TCP/IP interface (with CCA614) ACE850TP 59658 Fiber optic TCP/IP interface (with CCA614) ACE850FO 59659 Connection cord, L = 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CA 59650 Ethernet gateway EGX100 EGX100MG Ethernet gateway EGX300 EGX300MG Sepan IEC 61850 server (with one ECI850 cat. no. 59638 59653 Softer balance CTS TCSEAK0100 Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59634 Core balance CT, Ø 200 mm CSH200 59636 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT) Figure 100 Figure 100 Figure 100				
RJ45 TCP/IP interface (with CCA614)ACE850TP59658Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersTRS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (AC)ACE919CA59650EEthernet gatewayEGX100EGX100MGEEthernet gatewayEGX300EGX300MGSepam IEC 61850 server (with one EC1850 cat. no.EC185059638S9653 and two surge arresters cat. no. 16595)TCSEAK0100Core balance CTSCore balance CT, Ø 120 mmCSH12059636Core balance CT, Ø 200 mmCSH20059636Interposing ring CTCSH3059634Core balance CT interfaceACE99059672ACE99059672Accessories for phase-current sensors (LPCT)For phase-current sensors (LPCT)For phase-current sensors (LPCT)				
Fiber optic TCP/IP interface (with CCA614)ACE850FO59659Connection cord, L = 3 m, for TCP/IP interfacesCCA61459751ConvertersTACE909-259648RS 232 / RS 485 converterACE909-259649RS 485 / RS 485 interface (AC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet webserverEGX300EGX300MGSepan IEC 61850 server (with one EC1850 cat. no.EC18505963859653 and two surge arresters cat. no. 16595)TCSEAK0100Core balance CTSCore balance CT, Ø 120 mmCSH12059635Core balance CT, Ø 200 mmCore balance CT, Ø 200 mmCSH20059634Core balance CT interfaceACE99059672ACE99059672Accessories for phase-current sensors (LPCT)F				
Connection cord, L= 3 m, for TCP/IP interfaces CCA614 59751 Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CA 59649 RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepam IEC 61850 server (with one ECI850 cat. no. 59653 59638 59653 and two surge arresters cat. no. 16595) TCSEAK0100 Core balance CTS Core balance CT Ø 200 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59634 Core balance CT interface ACE990 59672 ACE990 59672	X /			
Converters Converters RS 232 / RS 485 converter ACE909-2 59648 RS 485 / RS 485 interface (AC) ACE919CA 59649 RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepan IEC 61850 server (with one ECI850 cat. no. ECI850 59638 59653 and two surge arresters cat. no. 16595) TCSEAK0100 Core balance CTS Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59634 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT) Externet sensore senso				
RS 232 / RS 485 converterACE909-259648RS 485 / RS 485 interface (AC)ACE919CA59649RS 485 / RS 485 interface (DC)ACE919CC59650Ethernet gatewayEGX100EGX100MGEthernet webserverEGX300EGX300MGSepam IEC 61850 server (with one ECI850 cat. no.59638Ethernet configuration kit for ECI850TCSEAK0100Core balance CTSCore balance CT, Ø 120 mmCore balance CT, Ø 200 mmCSH12059635Interposing ring CTCSH3059634Core balance CT interfaceACE99059672Accessories for phase-current sensors (LPCT)		CCA014	59751	
RS 485 / RS 485 interface (AC) ACE919CA 59649 RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepan IEC 61850 server (with one ECl850 cat. no. ECl850 59638 59653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECl850 TCSEAK0100 Core balance CTS Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59634 Core balance CT interface ACE990 59672 ACE990 59672		ACE000 2	59648	
RS 485 / RS 485 interface (DC) ACE919CC 59650 Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepam IEC 61850 server (with one ECl850 cat. no. 59653 59653 59653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECl850 TCSEAK0100 Core balance CTS TCSEAK0100 CSH120 59635 Core balance CT, Ø 120 mm CSH120 59636 Interposing ring CT Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT)				
Ethernet gateway EGX100 EGX100MG Ethernet webserver EGX300 EGX300MG Sepam IEC 61850 server (with one ECI850 cat. no. ECI850 59653 59653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECI850 TCSEAK0100 Core balance CTS Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59634 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT) Enterposing CL Core balance CT)				
Ethernet webserver EGX300 EGX300MG Sepam IEC 61850 server (with one ECI850 cat. no. 59653 S9653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECI850 TCSEAK0100 Core balance CTS Core balance CT, Ø 120 mm Core balance CT, Ø 200 mm CSH200 S9634 Core balance CT interface Accessories for phase-current sensors (LPCT)				
Sepam IEC 61850 server (with one ECI850 cat. no. 59638 S9653 and two surge arresters cat. no. 16595) ECI850 Ethernet configuration kit for ECI850 TCSEAK0100 Core balance CTs Core balance CT, Ø 120 mm Core balance CT, Ø 200 mm CSH200 S9634 Interposing ring CT Core balance CT interface ACE990 S9634 Core balance CT				
59653 and two surge arresters cat. no. 16595) Ethernet configuration kit for ECl850 Core balance CTs Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT) 59672				
Ethernet configuration kit for ECI850 TCSEAK0100 Core balance CTs CSH120 59635 Core balance CT, Ø 120 mm CSH200 59636 Core balance CT, Ø 200 mm CSH200 59636 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT)			59030	
Core balance CTs Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59636 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT)			TCSEAK0100	
Core balance CT, Ø 120 mm CSH120 59635 Core balance CT, Ø 200 mm CSH200 59636 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT) 59634				
Core balance CT, Ø 200 mm CSH200 59636 Interposing ring CT CSH30 59634 Core balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT)		CSH120	59635	
Interposing ring CT CSH30 59634 CORe balance CT interface ACE990 59672 Accessories for phase-current sensors (LPCT)				
Core balance CT interface ACE990 59672 ACCE990 For phase-current sensors (LPCT)				
Accessories for phase-current sensors (LPCT)				
LPGT injection adapter AGE917 59667				
Remote LPCT test plug CCA613 59666		CCA613	00066	

Sepam accessories and spare parts

Check the boxes \boxtimes or indicate the required quantities in the appropriate spaces according to your choices.

Manuals								
Sepam series 20								
User's manual			PCRED30	1005 EN	FR 🗌			
Sepam series 40						L		
User's manual			PCRED30	1006 EN	FR 🔲			
Sepam series 80								
Metering, protection, con manual	ntrol and m	onitoring user's	SEPED30	3001 EN	FR 📄			
Modbus communication	user's mar	nual	SEPED303	3002 EN	FR			
Installation and operation	n manual		SEPED30					
Communication protocol								
DNP3 protocol			SEPED30	5001 EN	FR 🗌			
IEC 60870-5-103 protoco	ol		SEPED30					
Note: the technical manuals must be ordered separately form the CDI centre in Evreux.								
Spare connecto								
Sepam	515							
20-pin screw-type conne	ctor		CCA	620	59668			
20-pin ring lug connector			CCA		59669			
6-pin screw-type connect			CCA		59656			
6-pin ring lug connector			CCA		59657			
1A/5ACT current conne	ector		CCA		59630			
1A/5ACT + IO current of			CCA		59629			
LPCT lateral current con			CCA		59631			
LPCT radial current conn			CCA	59702				
VT voltage connector			CCT	59632				
MES modules			0010	,+0	00002			
Connectors for 2 MES114	4 and 2 MF	-5120	Kit 26	40	59676			
					00010			
Spare Sepam s	eries o	o base uni						
With mimic-based UMI			SEP		59705			
With advanced UMI			SEP3		59704			
Without UMI			SEPO		59703			
12 spring clips					XBTZ3002			
Note: the base units are					annages.			
Spare Sepam se	eries 8	0 memory						
Memory cartridges				MMS020	59707			
	Note: memory cartridges cannot be sold without application. When ordering a base unit or a memory cardrige to be used with TCP/IP interfaces this option is mandatory.							
	sed with T					or a		
Application	sed with To Type			mandatory		or a		
Application	Туре	CP/IP interface	s this option is	mandatory		or a		
Application Substation	_		s this option is Working lang 59709	mandatory juage	Logipam	or a		
	Туре	CP/IP interface	s this option is Working lang 59709 EN/FR	mandatory juage 59710	Logipam	or a		
	Type S80	CP/IP interface	s this option is Working lang 59709 EN/FR	mandatory juage 59710 EN/SP	Logipam	or a		
Substation	Type S80 S81	CP/IP interface 59729	s this option is Working lang 59709 EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP	Logipam	or a		
	Type S80 S81 S82	CP/IP interface. 59729 59730 59731	s this option is Working lang 59709 EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP	Logipam	or a		
Substation	S80 S81 S82 S84	59729 59730 59731 59732	s this option is Working lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP	Logipam	or a		
Substation	Type S80 S81 S82 S84 T81	59729 59730 59731 59732 59733 59732 59733 59732 59733 59732 59733 59732 59722 59732 59722 597722 59772 59772 597722 59772 59772 59772 59772 59772 59772 59772 5977	s this option is Working lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory 59710 EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation	Type S80 S81 S82 S84 T81 T82	59729 59730 59731 59732 59733 59733 59733 59733 59733 59733 59733 59733 59733 59734 59758 59734 59758 59734 59758	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation	Type S80 S81 S82 S84 T81 T82 T87	59729 59730 59731 59732 59733 59734 59735	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation	Type S80 S81 S82 S84 T81 T82 T87 M81	59729 59730 59731 59732 59733 59734 59735 59736	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation Transformer Motor	Type S80 S81 S82 S84 T81 T82 T87 M81 M87	59729 59730 59731 59732 59733 59734 59735 59736 59737	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation	Type S80 S81 S82 S84 T81 T82 T87 M81 M87 M88	59729 59730 59731 59732 59733 59734 59735 59736 59737 59738	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation Transformer Motor	Type S80 S81 S82 S84 T81 T82 T87 M81 M87 M88 G82	59729 59730 59731 59732 59733 59734 59735 59736 59737 59738 59739	s this option is Vorking lang 59709 EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation Transformer Motor	Type S80 S81 S82 S84 T81 T82 T87 M81 M87 M88 G82 G87	59729 59730 59731 59732 59733 59734 59735 59736 59737 59738 59739 59731	s this option is Vorking lang 59709 EN/FR	mandatory juage 59710 EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP EN/SP	Logipam			
Substation Transformer Motor Generator	Type S80 S81 S82 S84 T81 T82 T87 M81 M87 M88 G82 G87 G88	CP/IP interface.	s this option is Vorking lang 59709 EN/FR	mandatory Juage 59710 EN/SP	Logipam			

Sepam accessories and spare parts

Check the boxes \boxtimes or indicate the required quantities in the appropriate spaces $\hfill \hfill \h$

Sepam series 20/40 and series 80 UM	I replacemen	t kit					
Kit advanced UMI 20/40 (serial number < 0440001)	SDK303	59694					
Kit advanced UMI 20/40 (serial number > 0440001)	SDK313	59695					
Series 80 advanced UMI kit	SDK383	59696					
Series 80 mimic-based UMI kit	SDK888	59697					
UMI tool kit SDK000 59698							
Note : The UMI tool kit is required for installing the UMI kit.							
Note: the same kit can be used with both Sepam series 20) and Sepam series -	40.					

5

schneider-electric.com

CAD software and tools

This international site allows you to access all the Schneider Electric products in just 2 clicks via comprehensive range datasheets, with direct links to: • complete library: technical documents, catalogs, FAQs, brochures...

• selection guides from the e-catalog.

• product discovery sites and their Flash animations. You will also find illustrated overviews, news to which you can subscribe, the list of country contacts... The CAD software and tools enhance productivity and safety. They help you create your installations by simplifying product choice through easy browsing in the Schneider Electric offers.

Last but not least, they optimise use of our products while also complying with standards and proper procedures.

Sepam series 20 Sepam series 40 Sepam series 80

Index

3
51
89
143
223

Reference index

Reference index

Commercial	Catalog	Designation	Pages
reference	number		
Α			
ACE850FO	59659	Fiber optic TCP/IP interface (with CCA614)	43, 91, 144, 183-185, 194-197, 225-226, 229
ACE850TP	59658	RJ45 TCP/IP interface (with CCA614)	43, 91, 144, 183-185, 194-197, 225-226, 229
ACE909-2	59648	RS485/RS232 converter	144, 148, 183, 198-199, 229
ACE917	59667	LPCT injection adaptor	214-216, 229
ACE919CA	59649	RS485/RS485 interface (AC)	144, 183, 200-201, 229
ACE919CC	59650	RS485/RS485 interface (DC)	144, 183, 200-201, 229
ACE937	59644	Fiber optic interface	52-53, 91, 144, 183-185, 188, 224-226, 229
ACE949-2	59642	RS485 interface 2 Wires	52-53, 91, 144, 183, 185-186, 198, 200, 224-226, 229
ACE959	59643	RS485 interface 4 Wires	52-53, 91, 144, 183-185, 187, 198, 200, 224-226, 229
ACE969FO-2	59724	FO multi-protocol interface	52-53, 91, 144, 183-185, 189-193, 196, 224-226, 229
ACE969TP-2	59723	RS485 multi-protocol interface	52-53, 91, 144, 183-185, 189-193, 196, 224-226, 229
ACE990	59672	Core balance CT interface	55-56, 67, 84, 93-94, 112, 136, 144, 209, 218, 220-221, 224-226, 229
AMT820	59699	Shield / Blank Plate	124, 229
AMT840	59670	Mounting plate	229
AMT852	59639	Sealing accessory	74, 124, 224-226, 229
AMT880	59706	Mounting plate	122, 124, 129, 226, 229
B			
B21	59624	Busbar B21	52, 156, 224
B22	59625	Busbar B22	13, 16-19, 52, 54, 74, 77, 80, 156, 210, 224
B80	59743	Busbar B80	15, 18-19, 89-92, 139-140, 160-161, 226, 230
B83	59744	Busbar B83	15, 18-19, 89-92, 124, 126, 132, 134, 138, 140, 160-161 210, 226, 230
С			
C86	59745	Capacitor C86	15, 34-35, 89-92, 126, 133-134, 160-161, 226, 230
CCA612	59663	Communication cord L=3m	80-81, 131, 184, 186-188, 191-192, 224-226, 229
CCA613	59666	LPCT test plug	214-216, 229
CCA614	59751	Connection cord, L= 3 m, for TCP/IP interfaces	131, 184, 196-197, 229
CCA620	59668	20 pins screw type connector	74, 80-81, 124, 131-132, 168-170, 224-226, 230
CCA622	59669	20 pins ring lug connector	74, 80-81, 124, 131, 224-226, 230
CCA622	59656	6 pins screw type connector	74, 81, 225, 230
CCA620	59657	6 pins sciew type connector	74, 81, 225, 230
CCA630	59630AA	1/5A CT current connector	74, 78, 80-82, 124, 131-134, 212-213, 224-226, 230
CCA634	59629	1/5A CT+I0 current connector	74, 78, 80-83, 124, 131, 135, 212-213, 218, 224-226, 23
CCA670	59631	LPCT current connector	74, 80-82, 214-216, 224-225, 230
CCA671	59702	LPCT current connector	124, 131, 133-134, 214-216, 226, 230
	59660	Remote module cord L=0,6m	80-81, 131, 162-163, 165, 224-226, 229
	59661	Remote module cord L=2m	80-81, 131, 162-163, 165-166, 224-226, 229
CCA772	50000	Domoto modulo conditional	
CCA772 CCA774	59662	Remote module cord L=4m	80-81, 131, 162-163, 165-166, 224-226, 229
CCA772 CCA774 CCA783	59664	PC connection cord	145, 148, 229
CCA770 CCA772 CCA774 CCA783 CCA785	59664 59665	PC connection cord MCS025 connection cord	145, 148, 229 131, 162, 168-171, 226, 229
CCA772 CCA774 CCA783	59664	PC connection cord	145, 148, 229

Reference index

reference CSH120 CSH200 CSH30 D DSM303 E E(1850) EGX100 EGX300 G G40 G82 G87	number 59635AA 59636AA 59634 59608 59608 59638 EGX100 EGX300 59686 59739 59741 59742	Residual current sensor, d=120 Residual current sensor, d=200 Interposing ring CT for Io Remote advanced UMI module IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82 Carporator C87	55-56, 83, 93-94, 135, 144, 209, 217-218, 224-226, 229 55-56, 83, 93-94, 135, 144, 209, 217-218, 224-226, 229 55, 84, 93-94, 136, 144, 175, 209, 218-219, 224-226, 229 72-75, 121-122, 124, 143, 162, 166-167, 224-226, 229 38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
CSH200 CSH30 D DSM303 E ECI850 EGX100 EGX300 G G40 G82	59636AA 59634 59608 59608 59638 EGX100 EGX300 59686 59739 59741	Residual current sensor, d=200 Interposing ring CT for Io Remote advanced UMI module IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82	55-56, 83, 93-94, 135, 144, 209, 217-218, 224-226, 229 55, 84, 93-94, 136, 144, 175, 209, 218-219, 224-226, 229 72-75, 121-122, 124, 143, 162, 166-167, 224-226, 229 38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
CSH30 DSM303 E ECI850 EGX100 EGX300 G G40 G82	59634 59608 59638 EGX100 EGX300 59686 59739 59741	 Interposing ring CT for Io Remote advanced UMI module IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82 	55, 84, 93-94, 136, 144, 175, 209, 218-219, 224-226, 229 72-75, 121-122, 124, 143, 162, 166-167, 224-226, 229 38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
D DSM303 E ECI850 EGX100 EGX300 G G40 G82	59608 59638 EGX100 EGX300 59686 59739 59741	Remote advanced UMI module IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82	72-75, 121-122, 124, 143, 162, 166-167, 224-226, 229 38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
DSM303 E EC1850 EGX100 EGX300 G G40 G82	59638 EGX100 EGX300 59686 59739 59741	IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82	38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
E EC1850 EGX100 EGX300 G40 G82	59638 EGX100 EGX300 59686 59739 59741	IEC61850 Sepam Server (with surge protection) Ethernet gateway Ethernet webserver Generator G40 Generator G82	38, 42, 44, 53, 91, 144, 148, 183, 202-205, 229 39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
ECI850 EGX100 EGX300 G40 G82	EGX100 EGX300 59686 59739 59741	Ethernet gateway Ethernet webserver Generator G40 Generator G82	39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
EGX100 EGX300 G40 G82	EGX100 EGX300 59686 59739 59741	Ethernet gateway Ethernet webserver Generator G40 Generator G82	39, 41, 144, 148, 183, 206, 208, 229 39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
EGX300 G G40 G82	EGX300 59686 59739 59741	Ethernet webserver Generator G40 Generator G82	39, 41, 144, 148, 183, 207-208, 229 14, 30-32, 53-54, 157, 225
G G40 G82	59686 59739 59741	Generator G40 Generator G82	14, 30-32, 53-54, 157, 225
G40 G82	59739 59741	Generator G82	
G82	59739 59741	Generator G82	
	59741		
G87		Concreter C97	15, 30-31, 33, 90-92, 160-161, 226, 230
	59742	Generator G87	15, 30, 32, 90-92, 126, 134, 160-161, 226, 230
G88		Generator G88	15, 30, 33, 90-92, 126, 134, 160-161, 226, 230
к			
Kit 2640	59676	2 sets of spare connectors	230
Μ			
M20	59622	Motor M20	13, 26-28, 52, 54, 77, 80, 156, 224
M20 M41	59736	Motor M41	14, 26-28, 53-54, 157, 225
M81	59736	Motor M81	15, 26-28, 90-92, 160-161, 226, 230
M87	59737	Motor M87	15, 26-27, 90-92, 126, 134, 160-161, 226, 230
M88	59738	Motor M88	15, 26, 29, 90-92, 126, 134, 160-161, 226, 230
MCS025	59712	Synchro-check module	16, 18, 20, 30, 90-91, 95, 114, 131, 143, 162, 168-171, 226, 229
MES114	59646	10 inputs + 4 outputs / 24-250Vdc	52-53, 68-69, 75, 77-78, 143, 154-155, 224-225, 229-230
MES114E	59651	10 inputs + 4 outputs / 110-125V	52-53, 78, 154-155, 224-225, 229
MES114F	59652	10 inputs + 4 outputs /220-250V	52-53, 78, 154-155, 224-225, 229
MES120	59715	14 inputs + 6 outputs / 24-250Vdc	90-91, 113, 126-127, 129, 143, 158-161, 226, 229-230
MES120G	59716	14 inputs + 6 outputs / 220-250Vdc	143, 158-161, 226, 229
MES120H	59722	14 inputs + 6 outputs / 110-125Vdc	143, 158-161, 226, 229
MET148-2	59641	8 temperature sensor module	20, 26, 30, 34, 52-54, 56, 78, 90-92, 94, 143, 162-164, 224 226, 229
MMS020	59707	Memory cartridge series 80	226, 230
MSA141	59647	Analog output module	44, 52-53, 59, 78, 99, 143, 162, 165, 224-226, 229
S			
S10MD	59604	Base unit with advanced UMI Sepam series 40	225
S10MX	59600	Base unit with basic UMI Sepam series 40	225
S10UD	59607	Base unit with advanced UMI Sepam series 20	224
S10UX	59603	Base unit with basic UMI Sepam series 20	224
S20	59620	Substation S20	13, 16-17, 34-35, 52, 54, 59, 77, 80, 156, 202, 224
S24	59778	Substation S24	13, 16-17, 20, 34-35, 52, 54, 156, 224
S40	59680	Substation S40	14, 16-17, 34-35, 53-54, 59, 157, 202, 225
S41	59681	Substation S41	14, 16, 53-54, 157, 225

Reference index

Commercial	Catalog	Designation	Pages
reference	number		
S43	59687	Substation S43	14, 16, 53-54, 157, 225
S50	59780	Substation S50	14, 16-17, 20, 53, 157, 225
S51	59781	Substation S51	14, 16, 20, 53, 157, 225
S52	59782	Substation S52	14, 16-17, 20, 53, 157, 225
S53	59783	Substation S53	14, 16, 20, 53, 157, 225
S80	59729	Substation S80	15-17, 90-92, 160-161, 202, 226, 230
S81	59730	Substation S81	15-16, 90-92, 160-161, 226, 230
S82	59731	Substation S82	15-17, 90-92, 160-161, 226, 230
S84	59732	Substation S84	15-17, 90-92, 160-161, 226, 230
SDK000	59698	UMI tool kit	231
SDK303	59694	Kit advanced UMI 20/40 (serial number < 0440001)	231
SDK313	59695	Kit advanced UMI 20/40 (serial number > 0440001)	231
SDK383	59696	Series 80 advanced UMI kit	231
SDK888	59697	Series 80 mimic-based UMI kit	231
SEP080	59703	Series 80 base unit without HMI	226, 230
SEP383	59704	Series 80 base unit with HMI	226, 230
SEP888	59705	Series 80 with mimic-based UMI	226, 230
SFT080	59711	Logipam option	120, 152, 226
SFT2841 CD	59679	Sepam PC software: SFT2841 and SFT2826	229
т			
T20	59621	Transformer T20	13, 20-21, 23, 52, 54, 77, 80, 156, 224
T24	59779	Transformer T24	13, 16, 20-21, 23, 34, 52, 54, 156, 224
T40	59683	Transformer T40	14, 20-21, 23, 53-54, 157, 225
T42	59684	Transformer T42	14, 20, 25, 53-54, 157, 225
T50	59784	Transformer T50	14, 16, 20-21, 23, 53, 157, 225
T52	59785	Transformer T52	14, 16, 20, 25, 53, 157, 225
T81	59733	Transformer T81	15, 20-24, 90-92, 160-161, 226, 230
Т82	59734	Transformer T82	15, 20, 25, 90-92, 160-161, 226, 230
Т87	59735	Transformer T87	15, 20, 22, 24-25, 90-92, 126, 134, 160-161, 226, 230

Schneider Electric Industries SAS 35, rue Joseph Monier CS 30323 F - 92506 Rueil-Malmaison Cedex (France)

RCS Nanterre 954 503 439 Registered capital of 896,313,776 € http://www.schneider-electric.com SEPED303005EN / 7

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

Printed on recycled paper.

Design: Schneider Electric Industries SAS - Polynotes Publishing: Schneider Electric Industries SAS Printing: Imprimerie du Pont de Claix/JPF - Made in France