Functions and characteristics

Compact NSX100/160/250.

Compact NSX400/630.

Introduction

Characteristics and performance of Compact NSX circuit breakers from 100 to 630 A

	Common characteristics				Comm	on chr	aracteris	tice										
					Control	on che		5005										
	Rated voltages				Control													
	Insulation voltage (V)	Ui	800				Manual		With togg									
	Impulse withstand voltag	je Uimp	8							t or extende	d rotary han							
	(kV)	Ue AC 50/60 Hz	<u></u>				Electrical		With remo	ote control			_					
	Operational voltage (V)		690		Versions													
	Suitability for isolation	IEC/EN 60947-2	yes				Fixed											
	Utilisation category		A				Withdrawa	able	Plug-in ba	ise								
	Pollution degree	IEC 60664-1	3						Chassis									
													_					_
	Circuit breakers				NSX10			NSX'			NSX25			NSX4			NSX6	
	Breaking capacity levels				B F	N H	S L	BF	N H	S L	BF	N H	S L	F N	н	S L	F N	/ F
	Electrical characteristics as per	IEC 60947-2																
	Rated current (A)	In 40 °C			100			160			250			400			630	
	Number of poles			_	2 (3), 3, 4			2 (3), 3,	4		2 ⁽³⁾ , 3, 4			3, 4			3, 4	
	Breaking capacity (kA rms)																	
		Icu AC 50/60 Hz	220/240 V		40 85	90 10	0 120 150			0 120 150		90 100	120 15	0 40 85		120 150	40 85	i 1
			380/415 V		25 36	50 70	100 150	25 3	5 50 70	100 150	25 36	50 70	100 15	36 50	70	100 150	36 50) 7
			440 V		20 35	50 65		20 3			20 35	50 65		0 30 42		90 130		
			500 V		15 25	36 50					15 30	36 50	65 70				25 30	
			525 V		- 22	35 35					- 22	35 35	40 50			40 50		
			660/690 V		- 8	10 10	15 20	- 8	10 10	15 20	- 8	10 10	15 20	10 10	20	25 35	10 10	2
	Service breaking capacity (kA rms)																	
		Ics AC 50/60 Hz			40 85		0 120 150			0 120 150			120 15			120 150		
			380/415 V		25 36	50 70						50 70	100 150				36 50	
			440 V			50 65		0 20 3			20 35	50 65		0 30 42		90 130		
			500 V		7.5 12.5						15 30	36 50	65 70				25 30	
			525 V		- 11	35 35					- 22	35 35					10 11	
			660/690 V	_	- 4	10 10	15 20		10 10	15 20	- 8	10 10	15 20		10	12 12) 1
	Durability (C-O cycles)	Mechanical			50000			40000			20000			15000			15000	
		Electrical	440 V In/2		50000			40000			20000			12000			8000	
			In		30000			20000			10000			6000			4000	
			690 V In/2		20000			15000			10000			6000			6000	
			In		10000			7500			5000			3000			2000	
	Characteristics as per Nema AB										1							
	Breaking capacity (kA rms)	AC 50/60 Hz	240 V 480 V				0 120 150 90 130) 40 8) 20 3		0 120 150 90 130		90 100 50 65		0 40 85 0 30 42		120 150 90 130		
			480 V 600 V				40 50) 20 35			20 35		- 20		40 50		2 6
	Characteristics as per UL 508		000 V		- 0	20 33	40 30	- 2) 20 33	40 30	- 20	20 33	40 30	- 20	35	40 30	20	
	Breaking capacity (kArms)	AC 50/60 Hz	240.1/		- 85	85 85		- 8	5 85 85		- 85	85 85		85 85	85		85 85	. 8
	Dicaking capacity (in this)	A0 30/00 TI2	480 V		- 25	50 65		- 3			- 35	50 65		35 50			35 50	
			600 V					- 1				15 15		20 20			20 20	
	Protection and measurements				10	10 10			, 10 10		10	10 10		20 20	20		-0 -20	_
	Short-circuit protection	Magnetic only																
	Overload / short-circuit protection	Thermal magnetic												-				
		Electronic																
		with neutral p	rotection (Off-0.5-1-OSN) (1)															
			ault protection															
		with zone sel			•			-			-			-			-	
		interlocking (2		-										_				
	Display / I, U, f, P, E, THD measurements				•						•			•				
	Options	Power Meter display on doo	n		•			•			•			•				
		Operating assistance			•			•			•			•				
		Counters Histories and alarms		-	<u>. </u>												-	
		Metering Com			-			-						-			-	
		Device status/control Com			-			-									-	
	Earth-leakage protection	By Vigi module		-	-			-			-						-	
	Laturicatage protection	By Vigirex relay			-									-				
	Installation / connections	by vigitex relay			-			-						1=			-	
	Dimensions and weights	Fixed front	2/20		105 - 101	96		105 1	24 - 2 0 0		105 101	v 96		140.000	E V 140		140	
	Dimensions (mm) W x H x D	Fixed, front connections	2/3P		105 x 161			105 x 1			105 x 161			140 x 25			140 x 25	
		The different of the	4P		140 x 161	80		140 x 1	5 I X 86		140 x 161	x 86		185 x 25	0 X 110		185 x 25	'S X .
	Weight (kg)	Fixed, front connections	2/3P 4P		2.05			2.2			2.4			6.05			6.2	
	0 "		42		2.4			2.6			2.8			7.90			8.13	
eutrals carrying	Connections										1						1000	
ot wires.	Connection terminals	Pitch	With/without spreaders		35/45 mm			35/45 n	im		35/45 mm	I		45/52.5 i 45/70 m			45/52.5 i 45/70 mi	

(1) OSN: Over Sized Neutral p high currents (e.g. 3rd harmonics). (2) ZSI: Zone Selective Interlocking using pilot wires. (3) 2P circuit breaker in 3P case for B and F types, only with thermal-magnetic trip unit.

Large Cu or Al cables

Cross-section

mm²

300

300

300

4 x 240

4 x 240

A-5

Protection of distribution

systems Compact NS circuit breakers from 630b up to 3200 A

Compact NS800L.

Compact circ	uit breakers					NS6	30h	NS8	00	NS10	000		NS1	250	NS1	600	NS1	600b	NS2000	NS2500	N\$3200
	un breakers						500-	-1400			500			230		000		0000	N02000	N02500	N05200
umber of poles						3, 4				3, 4			3, 4		3, 4		3, 4				
ontrol	manual		toggle			1				1					1		•				
	electric		direct or exte	ended rotary handle		_	ept LB)										-				
Type of circuit brea						N (exc			LB	N	ы		N	н	N	н	N	н			
onnections	fixed		front connec	tion					LD												
onnections	lixeu		rear connect				- C	÷.			÷.	÷.	12	÷.		÷.					
				tion with bare cables					-		-		-	-	-			-			
	withdrawable (on	ahaaaia)	front connec				÷				-		1	÷			-	-			
	withdrawable (on	criassis)	rear connect				- C	÷.	÷.		÷.	÷.	12	÷.		÷.	-	-			
-lectrical character	ristics as per Nema	AB1	rear connect	lion		N	н	÷.	LB	N	н	- T	N	н	N	H	N	н			
reaking capacity at 6		ADT		240 V		50	65	125	200	50	65	125	50	65	50	65	85	125			
reaking capacity at c	50112 (104)			480 V		35	50	100	200	35	50	100	35	50	35	50	65	85			
				600 V		25	50	-	100	25	50	-	25	50	25	50	50	-			
Electrical character	ristics as per IEC 60	947-2 and FN	60947-2	000 1		20	50		100	20	50		2.5	50	25	50	00				
ated current (A)		In	50 °C			630		800		1000			1250		1600		1600		2000	2500	3200
			65 °C (1)			630		800		1000			1250		1510		1550		1900	2500	2970
ated insulation volta	ide (V)	Ui				800				800			800		800		800				
ated impulse withsta		Uimp				8				8			8		8		8				
ated operational vol		Ue	AC 50/60 Hz	2		690				690			690		690		690				
Type of circuit brea				-		N	н	L	LB	N	н	L	N	н	N	н	N	н			
Itimate breaking	Manual	lcu	AC	220/240 V		85	85	150	200	85	85	150	85	85	85	85	85	125			
apacity (kA rms)			50/60 Hz	380/415 V		50	70	150	200	50	70	150	50	70	50	70	70	85			
				440 V		50	65	130	200	50	65	130	50	65	50	65	65	85			
				500/525 V		40	50	100	100	40	50	100	40	50	40	50	65	-			
				660/690 V		30	42	-	75	30	42	-	30	42	30	42	65	-			
		lcs	AC	220/240 V		50	52	150	200	50	52	150	50	52	37	37	65	94			
			50/60 Hz	380/415 V		50	52	150	200	50	52	150	50	52	37	37	52	64			
				440 V		50	48	130	200	50	48	130	50	48	25	32	65	64			
				500/525 V		40	37	100	100	40	37	100	40	37	20	25	65	-			
				660/690 V		30	31	-	75	30	31	-	30	31	15	21	65	-			
	Electrical	lcu	AC	220/240 V		50	70	150	-	50	70	150	50	70	50	70	-				
			50/60 Hz	380/415 V		50	70	150	-	50	70	150	50	70	50	70					
				440 V		50	65	130	-	50	65	130	50	65	50	65					
				500/525 V		40	50	100	-	40	50	100	40	50	40	50					
				660/690 V		30	42	-	-	30	42	-	30	42	30	42					
		lcs	AC	220/240 V		37	35	150	-	37	35	150	37	35	37	35	-				
			50/60 Hz	380/415 V		37	35	150	-	37	35	150	37	35	37	35					
				440 V		37	32	130	-	37	32	130	37	32	37	32					
				500/525 V		30	25	100	-	30	25	100	30	25	30	25					
				660/690 V		22	21	-	-	22	21	-	22	21	22	21					
Short-time withstand	current (kA rms)	Icw	AC	1 s		19.2	19.2	-	-	19.2	19.2	-	19.2	19.2	19.2	19.2	-				
			50/60 Hz	3s		-	-	-	-	-	-	-	-	-	-	-	32				
tegrated instantane			kA peak ±10	%		40	40	-	-	40	40	-	40	40	40	40	130				
uitability for isolation	1						-							-		-					
tilisation category	·)					B	В	A	A	B	В	A	B	В	B	В	B				
urability (C-O cycles			4401/	1= /0		10000		4000	4000	10000	0000	4000	10000		10000		5000				
	electrical		440 V	In/2		6000	6000	4000	4000	6000	6000	4000	5000 4000		5000		3000 2000				
			0001/	In In /0		5000	5000	3000	3000	5000	5000	3000			2000						
			690 V	In/2	1	4000	4000	3000	3000	4000	4000	3000	3000		2000		2000				
				In		2000	2000	2000	2000	2000	2000	2000	2000		1000		1000				

(1) 65 °C with vertical connections. See the temperature derating tables for other types of connections. (2) los: 100 % lou for breaking capacity 440V/500V/660V los: 75 % lou for breaking capacity 220V/380V.

Functions and characteristics

Protection of distribution systems

TM thermal-magnetic and MA magnetic trip units

TM thermal-magnetic and MA magnetic trip units can be used on Compact NSX100/160/250 circuit breakers with performance levels B/F/H/N/S/L. TM trip units are available in 2 versions:

The trip units are available in 2 versions:

TM-D, for the protection of distribution cables
 TM-G, with a low threshold, for the protection of

generators or long cable lengths.

Vigi modules or Vigirex relays can be added to all the circuit breakers to provide external earth-leakage protection.

TM-D and TM-G thermal-magnetic trip units

Circuit breakers equipped with thermal-magnetic trip units are used mainly in industrial and commercial electrical distribution applications:

TM-D, for protection of cables on distribution systems supplied by transformers
 TM-G, with a low pick-up for generators (lower short-circuit currents than with transformers) and distribution systems with long cable lengths (fault currents limited by the impedance of the cable).

Protection

Thermal protection (Ir)

Thermal overload protection based on a bimetal strip providing an inverse time curve I^2t , corresponding to a temperature rise limit. Above this limit, the deformation of the strip trips the circuit breaker operating mechanism.

This protection operates according to:

■ Ir that can be adjusted in amps from 0.7 to 1 times the rating of the trip unit (16 A to 250 A), corresponding to settings from 11 to 250 A for the range of trip units

■ a non-adjustable time delay, defined to ensure protection of the cables.

Magnetic protection (Im)

Short-circuit protection with a fixed or adjustable pick-up Im that initiates instantaneous tripping if exceeded.

TM-D: fixed pick-up, Im, for 16 to 160 A ratings and adjustable from 5 to 10 x In for 200 and 250 A ratings

fixed pick-up for 16 to 63 A ratings.

Protection against insulation faults

Two solutions are possible by adding:

- a Vigi module acting directly on the trip unit of the circuit breaker
- a Vigirex relay connected to an MN or MX voltage release.

Protection versions

3-pole:

- □ 3P 3D: 3-pole frame (3P) with detection on all 3 poles (3D)
- □ 3P 2D: 3-pole frame (3P) with detection on 2 poles (2D).
- 4-pole:
- □ 4P 3D: 4-pole frame (4P) with detection on 3 poles (3D).

□ 4P 4D: 4-pole frame (4P) with detection on all 4 poles (same threshold for phases and neutral).

MA magnetic trip units

In distribution applications, circuit breakers equipped with MA magnetic-only trip units are used for:

short-circuit protection of secondary windings of LV/LV transformers with overload protection on the primary side.

■ as an alternative to a switch-disconnector at the head of a switchboard in order to provide short-circuit protection.

Their main use is however for motor protection applications, in conjunction with a thermal relay and a contactor or motor starter (see "Motor protection", page A-34).

Protection Magnetic protection (Im)

Short-circuit protection with an adjustable pick-up Im that initiates instantaneous tripping if exceeded.

■ Im = In x ... set in amps on an adjustment dial covering the range 6 to 14 x In for 2.5 to 100 A ratings or 9 to 14 In for 150 to 220 A ratings.

Protection versions

- 3-pole (3P 3D): 3-pole frame (3P) with detection on all 3 poles (3D).
- 4-pole (4P 3D): 4-pole frame (4P) with detection on 3 poles (3D).

Note: All the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Thermal-magne	tic trip units	TM16D to 250D TM16G to 63G	0
Ratings (A)	In at 40 °C (1)	16 25 32 40 50 63 80 100125 160 200 250 16 25 40 63	
Circuit breaker	Compact NSX100		
	Compact NSX160	· · • • • • • • • • • • • • • • • • • •	
	Compact NSX250	· · · · · · · · · · · · · · · · · · ·	
Thermal protection			
Pick-up (A) tripping between 1.05 and 1.20 Ir	ir = in x	adjustable in amps from 0.7 to 1 x In	
Time delay (s)	tr	non-adjustable non-adjustable	—,
	tr at 1.5 x In	120 to 400 120 to 400	
	tr at 6 x Ir	15 -	
Magnetic protection	1		
Pick-up (A)	Im	fixed adjustable fixed	
accuracy ±20 %	Compact NSX100	190 300 400 500 500 500 640 800 63 80 80 125	
	Compact NSX160/250	190 300 400 500 500 500 640 800 1250 1250 5 to 10xln 63 80 80 125	
Time delay	tm	fixed	
Neutral protection			
Unprotected neutral	4P 3D	no detection no 4P3D version	
Fully protected neutral	4P 4D	1xlr 1xlr	
Magnetic trip ur	nits	MA 2.5 to 220	0
Ratings (A)	In at 65 °C	2.5 6.3 12.5 25 50 100 150 220 t	
Circuit breaker	Compact NSX100		
	Compact NSX160		
	Compact NSX250	· · · · • • • •	
Instantaneous mag	netic protection		
Pick-up (A) accuracy ±20 %	Im = In x	adjustable in amps adjustable in amps from 6 to 14 x ln (9 settings) from 9 to 14 x ln	
Time delay (ms)	tm	none	

(1) For temperatures greater than 40 °C, the thermal protection characteristics are modified. See the temperature derating table.

Functions and characteristics

Protection of distribution systems

Micrologic 2 and 1.3 M trip units

Micrologic 2 trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L. They provide:

- standard protection of distribution cables
- indication of:
- □ overloads (via LEDs)

□ overload tripping (via the SDx relay module). Circuit breakers equipped with Micrologic 1.3 M trip units, without thermal protection, are used in certain applications to replace switch-disconnectors at the head of switchboards. Micrologic 1.3 M trip units are dedicated to Compact NSX400/630 A circuit breakers.

Micrologic 2

DB112050

Circuit breakers equipped with Micrologic 2 trip units can be used to protect distribution systems supplied by transformers. For generators and long cables, Micrologic 2 G trip units offer better suited low pick-up solutions (see page A-48).

Protection.....

Settings are made using the adjustment dials with fine adjustment possibilities.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up Ir set using a dial and a non-adjustable time delay tr.

Short-circuits: Short-time protection with fixed time delay (Isd)

Protection with an adjustable pick-up Isd. Tripping takes place after a very short delay used to allow discrimination with the downstream device.

Short-circuits: Non-adjustable instantaneous protection

Instantaneous short-circuit protection with a fixed pick-up.

Neutral protection

On 3-pole circuit breakers, neutral protection is not possible.

On four-pole circuit breakers, neutral protection may be set using a three-position switch:

□ 4P 3D: neutral unprotected

□ 4P 3D + N/2: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir □ 4P 4D: neutral fully protected at Ir.

Indications.

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Orange overload pre-alarm LED: steady on when I > 90 % Ir.
- Red overload LED: steady on when I > 105 % Ir.

B112106

Remote indications

An overload trip signal can be remoted by installing an SDx relay module inside the circuit breaker.

This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is reclosed. For description, see page A-77.

Micrologic 1.3 M for magnetic protection only

Micrologic 1.3 M trip units provide magnetic protection only, using electronic technology. They are dedicated to 400/630 A 3-pole (3P 3D) circuit breakers or 4-pole circuit breakers with detection on 3 poles (4P, 3D) and are used in certain applications to replace switch-disconnectors at the head of switchboards. They are especially used in 3-pole versions for motor protection, see page A-38.

SDx remote indication relay module with its terminal block

that protects access to the adjustment dials.

Note: all the trip units have a transparent lead-sealable cover

A-14

Micrologic 2											
Ratings (A)	In at 40 °C ⁽¹⁾		40	100	160	250	400	630			
Circuit breaker	Compact NSX100				-	-	-	-			
	Compact NSX160					-	-	-			
	Compact NSX250			-			-	-			
	Compact NSX400		-	-	-			-			
	Compact NSX630		-	-	-						
L Long-time prote	ection										
Pick-up (A)		lo	value	dependir	ng on trip	unit ratin	g (In) and	d setting o	on dial		
tripping between	In = 40 A	lo =	18	18	20	23	25	28	32	36	40
1.05 and 1.20 Ir	In = 100 A	lo =	40	45	50	55	63	70	80	90	100
	In = 160 A	lo =	63	70	80	90	100	110	125	150	160
	In = 250 A (NSX250)	lo =	100	110	125	140	160	175	200	225	250
	In = 250 A (NSX400)	lo =	70	100	125	140	160	175	200	225	250
	In = 400 A	lo =	160	180	200	230	250	280	320	360	400
	In = 630 A	lo =	250	280	320	350	400	450	500	570	630
	lr = lo x					gs from 0 value of I		.9 - 0.92 -	0.93 - 0.	94 - 0.95	- 0.96 -
Time delay (s)	tr		non-a	djustable	1						
accuracy 0 to -20%		1.5 x lr	400								
		6 x Ir	16								
		7.2 x lr	11								
Thermal memory			20 mir	nutes bef	ore and a	after tripp	ing				
Short-time prot	ection with fixed tim	e delay									
Pick-up (A) accuracy ±10 %	lsd = lr x		1.5	2	3	4	5	6	7	8	10
Time delay (ms)	tsd		non-a	djustable							
	Non-tripping time		10								
	Maximum break time		80								
Instantaneous	protection										
Pick-up (A)	li non-adjustable		600	1500	2400	3000	4800	6900			
accuracy ±15 %	Non-tripping time Maximum break time		10 ms 50 ms	for I > 1.	5 li						

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.

Micrologic 1.3	3 M			
Ratings (A)	In at 65 °C	320	500	+
Circuit breaker	Compact NSX400		-	
	Compact NSX630	•		
S Short time pr	otection			Isd
Pick-up (A)	Isd	adjustable directly in amps		
accuracy ±15 %		9 settings: 1600, 1920, 2440, 2560, 2880, 3200, 3520, 3840, 4160 A	9 settings: 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500 A	
Time delay (ms)	tsd	non-adjustable		
	Non-tripping time Maximum break time	20 60		
I Instantaneou	s protection			
Pick-up (A)	li non-adjustable	4800	6500	
accuracy ±15 %	Non-tripping time Maximum break time	0 30 ms		

lsd

Functions and characteristics

Protection of distribution systems

Micrologic 5 / 6 A or E trip units

Micrologic 5 / 6 A (Ammeter) or E (Energy) trip units can be used on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L. They all have a display unit.

They offer basic LSI protection (Micrologic 5) or LSI and ground-fault protection G (Micrologic 6). They also offer measurement, alarm and

communication functions.

Trip unit menus.

Display of interrupted current.

SDx remote indication relay module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Protection.....

Settings can be adjusted in two ways, using the dials and/or the keypad at the keypad can be used to make fine adjustments in 1 A steps below the maximum value defined by the setting on the dial. Access to setting modifications via the keypad is protected by a locking function displayed on the screen and controlled by a microswitch of. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. With the cover closed, it is still possible to display the various settings and measurements using the keypad.

Overloads: Long time protection (Ir)

Inverse time protection against overloads with an adjustable current pick-up \mathbf{lr} set using a dial or the keypad for fine adjustments. The time delay \mathbf{tr} is set using the keypad.

Short-circuits: Short-time protection (Isd)

Short-circuit protection with an adjustable pick-up **Isd** and adjustable time delay **tsd**, with the possibility of including a portion of an inverse time curve ($l^{2}t$ On).

Short-circuits: Instantaneous protection (li)

Instantaneous protection with adjustable pick-up li.

Additional ground fault protection (lg) on Micrologic 6

Residual type ground-fault protection with an adjustable pick-up **Ig** (with Off position) and adjustable time delay **tg**. Possibility of including a portion of an inverse time curve (I²t On).

Neutral protection

On 4-pole circuit breakers, this protection can be set via the keypad:

- □ Off: neutral unprotected
- 0.5: neutral protection at half the value of the phase pick-up, i.e. 0.5 x Ir
- □ 1.0: neutral fully protected at Ir

 \square OSN: Oversized neutral protection at 1.6 times the value of the phase pick-up. Used when there is a high level of 3rd order harmonics (or orders that are multiples of 3) that accumulate in the neutral and create a high current. In this case, the device must be limited to Ir = 0.63 x In for the maximum neutral protection setting of 1.6 x Ir.

■ With 3-pole circuit breakers, the neutral can be protected by installing an external neutral sensor with the output (T1, T2) connected to the trip unit.

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of Micrologic control units to provide zone selective interlocking for short-time (Isd) and ground-fault (Ig) protection, without a time delay. For Compact NSX 100 to 250, the ZSI function is available only in relation to the upstream circuit breaker (ZSI out).

Display of type of fault

0

On a fault trip, the type of fault (Ir, Isd, Ii, Ig), the phase concerned and the interrupted current are displayed. An external power supply is required.

Indications.....

■ Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

- Orange overload pre-alarm LED: steady on when I > 90 % Ir.
- Red overload LED: steady on when I > 105 % Ir.

Remote indications

An SDx relay module installed inside the circuit breaker can be used to remote the following information:

overload trip

• overload prealarm (Micrologic 5) or ground fault trip (Micrologic 6).

This module receives the signal from the Micrologic electronic trip unit via an optical link and makes it available on the terminal block. The signal is cleared when the circuit breaker is closed.

These outputs can be reprogrammed to be assigned to other types of tripping or alarm. The module is described in detail in the section dealing with accessories.

NIL

Protection	Microl	ogic 5 / 6	A or E	trip ur	nits							
Ratings (A)	In at 40 °	C ⁽¹⁾		40 ⁽²⁾	100	160	250	400	630			
Circuit breaker	Compact I	NSX100		-		-	-	-	-			
	Compact I	NSX160		-	•		-	-	-			
	Compact I	NSX250						-	-			
	Compact I	NSX400		-	-	-	-	•	-			
	Compact I	NSX630		-	-	-	-	•	-			
L Long-time p	rotection											
Pick-up (A)	Ir =	dial setting			•	• •	o unit rati			•		
tripping between 1.05 and 1.20 Ir		In = 40 A	lo =	18	18	20	23	25	28	32	36	40
		In = 100 A	lo =	40	45	50	55	63	70	80	90	100
		ln = 160 A	lo =	63	70	80	90	100	110	125	150	160
		In = 250 A	lo =	100	110	125	140	160	175	200	225	250
		In = 400 A	lo =	160	180	200	230	250	280	320	360	400
		In = 630 A	lo =	250	280	320	350	400	450	500	570	630
		keypad se					steps be			ue set oi	n dial	
Time delay (s) accuracy 0 to -20 %	tr =	keypad se		0.5	1	2	4	8	16			
)		1.5 x lr	15	25	50	100	200	400			
			6 x lr	0.5	1	2	4	8	16			
			7.2 x lr	0.35	0.7	1.4	2.8	5.5	11			
Thermal memory	aretestion .		able time		nutes be	fore and	after trip	ping				
S Short-time				1.5	2	3	4	5	6	7	8	10
Pick-up (A) accuracy ±10 %	Isd = lr x						-				0	10
		for Micrologic 5				x Ir steps 0.5 x In c						
		for microlo					2 x ln (25				A)	
Time delay (s)	tsd =	keypad	I ² Off	0	0.1	0.2	0.3	0.4				
		setting	l ² On	-	0.1	0.2	0.3	0.4				
	Non-trippin	g time (ms)		20	80	140	230	350				
	Maximum b	oreak time (m	is)	80	140	200	320	500				
Instantaneo	us protect	ion										
Pick-up (A) accuracy ±15 %	li = ln x	keypad se	tting				0.5 x ln c 2 x ln (25				A)	
	Non-trippin Maximum t			10 ms 50 ms	for I > li							
G Ground-fau	It protectio	n - for Mic	rologic 6	A or E								
Pick-up (A)	lg = ln x	dial setting										
accuracy ±10 %		In = 40 A		0.4	0.4	0.5	0.6	0.7	0.8	0.9	1	Off
		ln > 40 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	1	Off
				Fine a	djustme	nt in 0.05	Asteps	using the	e keypad			
Time delay (s)	tg =	keypad	l ² Off	0	0.1	0.2	0.3	0.4				
,	-	setting	l ² On	-	0.1	0.2	0.3	0.4				
	Non-trippin	g time (ms)		20	80	140	230	350				
		oreak time (m	is)	80	140	200	320	500				
Test	Ig function			built-in								
	•											

(1) If the trip units are used in high-temperature environments, the Micrologic setting must take into account the thermal limitations of the circuit breaker. See the temperature derating table.
 (2) For 40 A rating, the neutral N/2 adjustment is not possible.

Functions and characteristics

Micrologic control units Overview of functions

All Compact circuit breakers are equipped with a Micrologic control unit that can be changed on site. Control units are designed to protect Power circuits	Dependability Integration of protection functions in an ASIC elec Micrologic control units guarantees a high degree	tronic component used in all	Micrologic without measurement		d programmable prote	ection	
and loads. Alarms may be programmed for remote indications. Measurements of current, voltage, frequency, power and power quality optimise continuity of service and	conducted or radiated disturbances. On Micrologic A, E and P control units, advanced an independent microprocessor.			A: ammeter I ₁ , I ₂ , I ₃ , I _N , I _{earth-fault} , I _e fault indications settings in amperes ar	_{arth-leakage} and maximeter for t	these measurements	
energy management.	Accessories Certain functions require the addition of Micrologi described on page A-27. The rules governing the various possible combine the documentation accessible via the Products ar the www.schneider-electric.com web site.	ations can be found in			E: Energy incorporates all the rms measurements of Micrologic A, plus voltage, power factor, power and energy metering measurements. □ calculates the current demand value □ "Quickview" function for the automatic cyclical display of the most useful values (as standard or by selection).	 P: A + power meter + programmable protection measurements of V, A, W, VAR, VA, Wh, VARh, VHZ, V_{geat}, A_{peak}, power factor and maximeters and minimeters IDMTL long-time protection, minimum and maxivoltage and frequency, voltage and current imbala phase sequence, reverse power load shedding and reconnection depending on por current measurements of interrupted currents, different fault indications, maintenance indications, event histories and time-stamping, etc. 	VAh, timum ance, power
Micrologic name codes	Current protection Micrologic 2: basic protection						
2.0 E x y z	th	Protection: long time + instantaneous	2.0	2.0 A	2.0 E		
X: type of protection 2 for basic protection 5 for selective protection 6 for selective + earth-fault protection 7 for selective + earth-leakage protection. Y: control-unit generation Identification of the control-unit generation.	0 Time Strategy Strat						
"0" signifies the first generation. 2: type of measurement A for "ammeter" E for "energy" P for "power meter"		Protection: long time + short time + instantaneous	5.0 Yreano	5.0 A	5.0 E	5.0 P	
	Micrologic 6: selective + earth-fault protection	n					
	Concesso Con	Protection: long time + short time + instantaneous + earth fault	6.0 vertical	6.0 A			
	Micrologic 7: selective + earth-leakage protect	tion 6: selective + earth-fault protection Protection: long time + short time + instantaneous + earth leakage up to 3200A		7.0 A		7.0 P	
A-6 Schneider						Schneider	A-7

Functions and characteristics

Micrologic control units For Compact NS630b to 3200

Micrologic 2.0, 5.0 and 6.0 control units protect power Protection circuits. Micrologic 5.0 and 6.0 offers time Protection thresholds and delays are set using the adjustment dials. discrimination for short-circuits as well. **Overload protection** True rms long-time protection. Thermal memory: thermal image before and after tripping. DB128030 Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug. Micrologic 5.0 Overload protection can be cancelled using a specific LT rating plug "Off". Short-circuit protection Short-time (rms) and instantaneous protection. Selection of I²t type (ON or OFF) for short-time delay. Earth-fault protection Residual or source ground return earth fault protection. Selection of I²t type (ON or OFF) for delay. **Neutral protection** On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2) or neutral protection at Ir (4P 4d). Indications Overload indication by alarm LED on the front; the LED goes on when the current exceeds the long-time trip threshold. Test A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation after installing the trip unit or accessories. 2 alarm 🔵 5 3 4 6

long-time threshold and tripping delay

- 2 overload alarm (LED)
- 3 short-time pick-up and tripping delay
- instantaneous pick-up fixing screw for long-time rating plug 4
- 5
- 6 test connector

Protection		Mi	crolo	ogic 2	0								
Long time				-gio z								5 AL .	
Current setting (A)	Ir = ln x	0.4	0.5	0.6	0.7	0.8	30.	9 ().95 ().98	1	lr son t	
tripping between 1.05 a				es or dis									
Time setting		(s) 0.5		2	4	8	1: 1:				24	-	
-		.5 x lr 12.		50	100	-			-		600	- \	
	5		(1) 1	2	4	8	12				24	tr	
			(2) 0.6								16.6	× 1	
Thermal memory				before								-	
(1) 0 to -40 % - (2) 0 to -	60 %											- 🗳	⇒lsd
Instantaneous												0	
Pick-up (A)	Isd = Ir x	1.5	2	2.5	3	4	5	6	5 6	3	10		
accuracy: ±10 %													
lime delay		ma	x. reset	table tin	ne: 20 n	ns; ma	x break	k time:	80 ms			_	
Drotoction			Mie	rolo	nio E	0/6	0						
Protection			IVIIC	rolog	JIC 5.	076.	0						
Long time	la 1		0.4	0.5	0 (0.7	0.0	0.0	0.05	0.00	1	i t≰ 📥 Ir	
Current setting (A)	Ir = ln x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98			
Tripping between 1.05 a	ind 1.20 x lr			r ranges					<u> </u>			- " 🔪	
Time setting		tr (s)	0.5	1	2	4	8	12	16	20	24	_ Vi ^{tr}	' <u>×</u>
Fime delay (s)	Accuracy: 0 to -	30 % 1.5 x lr	12.5		50	100	200	300	400	500	600		L
	Accuracy: 0 to -	20 % 6 x Ir	0.7 <mark>(1</mark>)	1	2	4	8	12	16	20	24		Isd
	Accuracy: 0 to -	20 % 7.2 x lr	0.7 <mark>(2</mark>)	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6		tsd
Thermal memory			20 m	inutes b	pefore a	nd afte	er trippi	ing				-	רי€יי
(1) 0 to -40 % - (2) 0 to -	60 %											-	T C
Short time												n	
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10	-	
Accuracy: ±10 %													
Time setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					_	
	oottiingo	l ² t On	-	0.1	0.2	0.3	0.4						
Time delay (ms) at 10 x	Ir tsd (max resetta		20	80	140	230	350					_	
(I ² t Off or I ² t On)	tsd (max break	,	80	140	200	320	500						
Instantaneous	reak (max preak		00	140	200	J2U	500						
	C. In		2	2	4	,	0	10	10	15	- 44		
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off		
Accuracy: ±10 %												_	
Time delay				resettat break ti			6						
Earth fault				ologic								≊t₄	
Pick-up (A)	Ig = ln x		А	В	С	D	Е	F	G	Н	J	128038	
Accuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	– [–] 👍 lg	' <u>×</u>
	400 A < In < 125	50 A	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		, Li
	100 A < III < 120		500	640	720	800	880	960			1200		1
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4	/00	10-0	1120	1200		
Time setting ty (s)	Settings		-									0	
	4	I ² t On		0.1	0.2	0.3	0.4					_ 0	
Time delay (ms)	tg (max resettal	,	20	80	140	230	350						
at In or 1200 A (I ² t Off or	I ² t On) tg (max break ti	me)	80	140	200	320	500						

 at In or 1200 A (I²t Off or I²t On)
 tg (max resolution time)
 20
 00
 140
 200

 Note: all current-based protection functions require no auxiliary source.

 The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Micrologic control units

Micrologic A "ammeter"

Micrologic A control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection, version 7 provides earth-leakage protection.

- long-time threshold and tripping delay overload alarm (LED) at 1.125 Ir
- 23 short-time pick-up and tripping delay
- 4 instantaneous pick-up
- 5 earth-leakage or earth-fault pick-up and tripping delay
- 6 7 earth-leakage or earth-fault test button
- long-time rating plug screw
- 8 test connector
- 9 lamp test, reset and battery test
- 10 indication of tripping cause digital display
- 11
- 12 three-phase bargraph and ammeter
- 13 navigation buttons

"Ammeter" measurements

Micrologic A control units measure the true (rms) value of currents.

They provide continuous current measurements from 0.2 to 1.2 In and are accurate to within 1.5 % (including the sensors).

A digital LCD screen continuously displays the most heavily loaded phase (Imax) or displays the I_1 , I_2 , I_3 , I_N , I_9 , $I\Delta_n$, stored-current (maximeter) and setting values by successively pressing the navigation button.

The optional external power supply makes it possible to display currents < 20 % In. Below 0.1 In, measurements are not significant. Between 0.1 and 0.2 In, accuracy changes linearly from 4 % to 1.5 %.

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" measurements
- tripping causes
- maximeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.

Thermal memory: thermal image before and after tripping. Setting accuracy may be enhanced by limiting the setting range using a different long-time rating plug.

Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.

Selection of I²t type (ON or OFF) for short-time delay.

Earth-fault protection

Residual or source ground return earth fault protection. Selection of I²t type (ON or OFF) for delay.

Residual earth-leakage protection (Vigi).

Operation without an external power supply.

N Protected against nuisance tripping.

ഹ് DC-component withstand class A up to 10 A

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Fault indications

LEDs indicate the type of fault:

- overload (long-time protection Ir)
- short-circuit (short-time lsd or instantaneous li protection)
- earth fault or earth leakage (Ig or I∆n)
- internal fault (Ap).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 A and 7.0 A control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Note Micrologic A control units come with a transparent lead-seal cover as standard

Protoction			Mie	role	nio 2	0.4								-
Protection			WIC	rolo	gic 2	.UA								
Long time Current setting (A)			0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	LE128031	J	
0	Ir								g-time			DB12	⇔ lr	
ripping between 1.05 and 1.20 x		4r (a)		1 1				, 0	0	01		-		
Fime setting		tr (s)	0.5	25	2 50	4	8 200	12 300	16	20 500	24	-		
īme delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5 0.7 <mark>(1)</mark>						400		600		🔥 tr	
	Accuracy: 0 to -20 %	6 x lr			2	4	8	12	16	20	24			
	Accuracy: 0 to -20 %	7.2 x lr		0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	-		
Thermal memory			20 mi	nutes	petore a	and afte	er trippi	ng				-		lsd
(1) 0 to -40 % - (2) 0 to -60 %												0	-	
Instantaneous								_						
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %												_		
ïme delay					ble time me: 80		S							
Drotostion			Mie		nio E	010	0/7	0.4				_		
Protection							.0/7	.UA						
Long time					5.0/6							≊ t ≰	de la	
Current setting (A)	Ir = In x		0.4	0.5	0.6	0.7	0.8	0.9			1	▲t	< Ir	
ripping between 1.05 and 1.20 x	: Ir								g-time			_ ^		_ l²t
ime setting		tr (s)	0.5	1	2	4	8	12	16	20	24	_	htr 🔥	' <u>×</u>
ïme delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600		*	L I't
	Accuracy: 0 to -20 %	6 x Ir	0.7 <mark>(1)</mark>		2	4	8	12	16	20	24		7	lsd
	Accuracy: 0 to -20 %	7.2 x lr			1.38		5.5	8.3	11	13.8	16.6	_	्र	tsd
hermal memory			20 mi	nutes l	before a	and afte	er trippi	ing						
1) 0 to -40 % - (2) 0 to -60 %														
Short time												0		
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
ccuracy: ±10 %														
ime setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					-		
		I ² t On	-	0.1	0.2	0.3	0.4							
ïme delay (ms) at 10 x lr	tsd (max resettable tir	ne)	20	80	140	230	350					-		
² t Off or I ² t On)	tsd (max break time)	,	80	140	200	320	500							
Instantaneous														
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off			
Accuracy: ±10 %			-	0	·	0	0				0			
ïme delay					ble time me: 50		S					-		
Forth foult						1113						36		
Earth fault	lar la v			ologic		D	Г	Г	C			▲ta		_l ² t o
Pick-up (A)	Ig = In x		A	B	C	D	E	F	G	H	J	DE	📕 lg	N N
ccuracy: ±10 %	In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		T	L I ² t off
	400 A < In < 1250 A		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		∕tg	
	In≥1250 A	.0	500	640	720	800	880	960	1040	1120	1200	-	∽∽-{}	
ime setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					Ļ		
		I ² t On	-	0.1	0.2	0.3	0.4					0		
ime delay (ms)	tg (max resettable tim	e)	20	80	140	230	350							
t In or 1200 A (I ² t Off or I ² t On)	tg (max break time)		80	140	200	320	500							
Residual earth leakage (Vigi)			Micro	ologic								∆ta	⇔l∆n	
Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30	DB1		
Accuracy: 0 to -20 %													∆t	
ïme delay ∆t (ms)	Settings		60	140	230	350	800					-	V	
	∆t (max resettable tim	e)	60	140	230	350	800							
	∆ t (max break time)		140	200	320	500	1000					0		
	· · ·					0.45	0.40	0.47	0.4-			-		
Ammeter			Mic	rolo	gic 2	.0/5	.076	.0/7	.0 A					
Type of measurements			Rang	e			Accu	iracy						
nstantaneous currents	l1, l2, l3, lN		0.2 x	In to 1.	2 x In		± 1.5	%						
	lg (6.0 A)		0.2 x	In to In			± 10 °	%						
	l∆n (7.0 A)		0 to 3				± 1.5							
Current maximeters of				In to 1	2 v In		+ 1 5							

± 1.5 %

I∆n (7.0 A) I1, I2, I3, IN Current maximeters of 0.2 x In to 1.2 x In

Note: all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions and characteristics

Micrologic control units

Micrologic E "energy"

Micrologic E control units protect power circuits. They also offer measurements, display, communication and current maximeters. Version 6 provides earth-fault protection.

- long-time threshold and tripping delay overload alarm (LED) at 1.125 Ir
- 23 short-time pick-up and tripping delay
- 4 instantaneous pick-up
- 5 earth-leakage or earth-fault pick-up and tripping delay
- 6 7 earth-leakage or earth-fault test button
- long-time rating plug screw
- 8 test connector
- 9 lamp test, reset and battery test
- indication of tripping cause 10
- digital display 11
- 12 three-phase bargraph and ammeter
- navigation button "quick View" (only with Micrologic E) 13 14 navigation button to view menu contents
- navigation button to change menu 15

(1) Display on FDM121 only.

Note: Micrologic E control units come with a transparent leadseal cover as standard.

"Energy meter" measurements

In addition to the ammeter measurements of Micrologic A

Micrologic E control units measure and display:

- current demand
- voltages: phase to phase, phase to neutral, average ⁽¹⁾ and unbalanced ⁽¹⁾
- instantaneous power: P, Q, S
- power factor: PF
- power demand: P demand
- energy: Ep, Eq⁽¹⁾, Es⁽¹⁾

Accuracy of active energy Ep is 2 % (including the sensors). The range of measurement is the same as current with Micrologic A, depending of an external power supply module (24 V DC).

Communication option

In conjunction with the COM communication option, the control unit transmits the following:

- settings
- all "ammeter" and "energy" measurements
- enable connection to FDM121
- tripping causes
- maximeter / minimeter readings.

Protection

Protection thresholds and delays are set using the adjustment dials.

Overload protection

True rms long-time protection.

Thermal memory: thermal image before and after tripping. Setting accuracy may be enhanced by limiting the setting range using a different long-

time rating plug. Overload protection can be cancelled using a specific LT rating plug "Off".

Short-circuit protection

Short-time (rms) and instantaneous protection.

Selection of I²t type (ON or OFF) for short-time delay.

Earth-fault protection

Source ground return earth fault protection.

Selection of I²t type (ON or OFF) for delay.

Neutral protection

On three-pole circuit breakers, neutral protection is not possible. On four-pole circuit breakers, neutral protection may be set using a three-position switch: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d).

Zone selective interlocking (ZSI)

A ZSI terminal block may be used to interconnect a number of control units to provide total discrimination for short-time and earth-fault protection, without a delay before tripping

Overload alarm

A yellow alarm LED goes on when the current exceeds the long-time trip threshold.

Programmable contacts

The programmable contacts may be used to signal events

(Ir, Isd, Alarm Ir, Alarm Ig, Ig). They can be programmed using the keypad on the Micrologic E control unit or remotely using the COM option (BCM ULP) and RSU software.

Fault indications

- LEDs indicate the type of fault:
- overload (long-time protection Ir)
- short-circuit (short-time lsd or instantaneous li protection)
- earth fault (Ig)
- internal fault (Ap).

Trip history

The trip history displays the list of the last 10 trips. For each trip, the following indications are recorded and displayed:

- the tripping cause: Ir, Isd, Ii, Ig or Auto-protection (Ap) trips
- the date and time of the trip (requires communication option).

Battery power

The fault indication LEDs remain on until the test/reset button is pressed. Under normal operating conditions, the battery supplying the LEDs has a service life of approximately 10 years.

Test

A mini test kit or a portable test kit may be connected to the test connector on the front to check circuit-breaker operation. For Micrologic 6.0 E control units, the operation of earth-fault or earth-leakage protection can be checked by pressing the test button located above the test connector.

Protection			Mic	rolo	gic 2	.0 E								
Long time												⊚t∕		
Current setting (A)			0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	DB128031	🗢 Ir	
Tripping between 1.05 and 1.20 x I	r								g-time					
Time setting	A 0 to 00.0/	tr (s)	0.5	1	2	4	8	12	16	20	24	-		
Time delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5 0.7 ⁽¹⁾	25	50	100	200	300	400	500	600		🔥 tr	
	Accuracy: 0 to -20 %	6 x lr			2	4	8	12	16	20	24			
F 1 1	Accuracy: 0 to -20 %	7.2 x lr		0.69	1.38	2.7	5.5	8.3	11	13.8	16.6	-		
Thermal memory			20 mi	nutes t	pefore a	and atte	er trippi	ng				-	<	⇒lsd
(1) 0 to -40 % - (2) 0 to -60 %												0		
Instantaneous			4.5	0	0.5	0		~	0	0	10			
Pick-up (A)	Isd = Ir x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %												-		
lime delay					ole time me: 80		5							
												-		1
Protection			Mic	rolo	gic 5	.0/6	.0 E							X
Long time			Micr	ologic	5.0/6	.0 E						≅ t/		
Current setting (A)	Ir = In x		0.4	0.5	0.6	0.7	0.8	0.9	0.95	0.98	1	DB128032	[•] <⇔ lr	
Tripping between 1.05 and 1.20 x I	r		Other	range	s or dis	able by	chang	jing lon	g-time i	rating p	olug	DB		l²t
Fime setting		tr (s)	0.5	1	2	4	8	12	16	20	24	-	tr	×.
lime delay (s)	Accuracy: 0 to -30 %	1.5 x lr	12.5	25	50	100	200	300	400	500	600	-	- V	L I²t (
	Accuracy: 0 to -20 %	6 x Ir	0.7 <mark>(1)</mark>	1	2	4	8	12	16	20	24		<u> </u>	Isd
	Accuracy: 0 to -20 %	7.2 x lr	0.7 <mark>(2)</mark>	0.69	1.38	2.7	5.5	8.3	11	13.8	16.6		<	tsd
Thermal memory	· · · · · ·		20 mi	nutes b	efore a	and afte	er trippi	ing				-		
(1) 0 to -40 % - (2) 0 to -60 %												-		
Short time												n,		
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10	-		
Accuracy: ±10 %														
Fime setting tsd (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4					-		
		I ² t On	-	0.1	0.2	0.3	0.4							
Time delay (ms) at 10 x Ir	tsd (max resettable tin	ne)	20	80	140	230	350					-		
(I ² t Off or I ² t On)	tsd (max break time)		80	140	200	320	500							
Instantaneous														
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off			
Accuracy: ±10 %														
lime delay					ole time me: 50		S					-		
Earth fault						1115						8ti		
Pick-up (A)	la – la v		A	B	C	D	Е	F	G	н	J	DB128036		I ² t or
Accuracy: ±10 %	Ig = In x In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		📥 lg	×.
loodidoy. ±10 /0	400 A < In < 1250 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		Ť.	LI ² t off
	400 A < IN < 1250 A In ≥ 1250 A		0.2 500	0.3 640	0.4 720	0.5 800	0.6 880	0.7 960	0.8 1040	0.9 1120	ı 1200		tç	1
Time setting tg (s)	Settings	I ² t Off	0	0.1	0.2	0.3	0.4	900	1040	1120	1200	-	•	
into setting ty (s)	ooaniya	I ² t On	-	0.1	0.2	0.3	0.4					0		
Time delay (ms)	tg (max resettable time		20	80	140	230	350					- 0		
at In or 1200 A (I ² t Off or I ² t On)	tg (max break time)	-)	20 80	80 140	200	230 320	500							
	y (max preak lime)				gic 2.			0 E						me
Energy					JIC 2	.075								
Type of measurements			Rang		2 1 1-		Accu	-						
nstantaneous currents	I1, I2, I3, IN			In to 1.			±1.5							
Design of the second se	Ig (6.0 E)			In to I			± 10 9							
Current maximeters of	l1, l2, l3, lN			In to 1.			± 1.5							
Demand currents of I1, I2, I3, Ig	N40 N00 N04 N411	(ON 1) (ON 1		In to 1.			± 1.5							
/oltages	V12, V23, V31, V1N, V	/2N, V3N		0 690 V			±0.5							
Active power	P			2000 k	٧V		±2%							
Power factor	PF		0 to 1	0000			±2%							
Demand power	P demand			2000 k			±2%							
Active energy	Ep		-10 ¹⁰	GWht	o 10 ¹⁰ (GWh	±2%							

Note: all current-based protection functions require no auxiliary source. The test / reset button resets maximeters, clears the tripping indication and tests the battery.

Functions and characteristics

Micrologic control units

Micrologic P "power"

Micrologic P control units include all the functions offered by Micrologic A.

In addition, they measure voltages and calculate power and energy values.

They also offer new protection functions based on currents, voltages, frequency and power reinforce load protection in real time.

- Long-time current setting and tripping delay.
- Overload signal (LED).
- 3 Short-time pick-up and tripping delay.
- 4 5
- Instantaneous pick-up. Earth-leakage or earth-fault pick-up and tripping delay.
- 6 Earth-leakage or earth-fault test button.
- Long-time rating plug screw. 7
- Test connector.
- 9 Lamp + battery test and indications reset.
- 10 Indication of tripping cause.
- 11 High-resolution screen.
- 12 Measurement display.
- 13 Maintenance indicators.
- 14 Protection settings.
- 15 Navigation buttons
- 16 Hole for settings lockout pin on cover.

Note: Micrologic P control units come with a non-transparent lead-seal cover as standard.

Protection.....

Protection settings

The adjustable protection functions are identical to those of Micrologic A (overloads, short-circuits, earth-fault and earth-leakage protection).

Fine adjustment

Within the range determined by the adjustment dial, fine adjustment of thresholds (to within one ampere) and time delays (to within one second) is possible on the keypad or remotely using the COM option.

IDMTL (Inverse Definite Minimum Time Lag) setting

Coordination with fuse-type or medium-voltage protection systems is optimised by adjusting the slope of the overload-protection curve. This setting also ensures better operation of this protection function with certain loads.

Neutral protection

On three-pole circuit breakers, neutral protection may be set using the keypad or remotely using the COM option, to one of four positions: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d) and neutral protection at 1.6 Ir (4P 3d + 1.6N). Neutral protection at 1.6 Ir is used when the neutral conductor is twice the size of the phase conductors (major load imbalance, high level of third order harmonics).

On four-pole circuit breakers, neutral protection may be set using a three-position switch or the keypad: neutral unprotected (4P 3d), neutral protection at 0.5 Ir (4P 3d + N/2), neutral protection at Ir (4P 4d). Neutral protection produces no effect if the long-time curve is set to one of the IDMTL protection settings.

Programmable alarms and other protection

Depending on the thresholds and time delays set using the keypad or remotely using the COM option, the Micrologic P control unit monitors currents and voltage, power, frequency and the phase sequence. Each threshold overrun is signalled remotely via the COM option. Each threshold overrun may be combined with tripping (protection) or an indication carried out by an optional M6C programmable contact (alarm), or both (protection and alarm).

Load shedding and reconnection

Load shedding and reconnection parameters may be set according to the power or the current flowing through the circuit breaker. Load shedding is carried out by a supervisor via the COM option or by an M6C programmable contact.

Indication option via programmable contacts

The M6C (six contacts) auxiliary contacts may be used to signal threshold overruns or status changes. They can be programmed using the keypad on the Micrologic P control unit or remotely using the COM option (BCM ULP) and RSU software.

Communication option (COM)

The communication option may be used to:

- remotely read and set parameters for the protection functions
- transmit all the calculated indicators and measurements
- signal the causes of tripping and alarms
- consult the history files and the maintenance-indicator register.
- maximeter reset.

An event log and a maintenance register, stored in control-unit memory but not available locally, may be accessed in addition via the COM option.

Protection			Micr	oloa	ic 5.	0/6.0/	7,0	Ρ						<u> </u>
Long time (rms)						/7.0 P						2	th do te	
Current setting (A)	Ir = ln x		0.4	0.5	0.6		0.8	0.9	0.95	0.98	1	DB128043	t 🛉 🔶 İr	
Tripping between 1.05 and 1.20						able by cha						DB1	- <u>(</u> ;	
Time setting	t , (s		0.5	1	2	4	8	12	16	20	24	-	X	tr
Time delay (s)	Accuracy: 0 to -30 % 1.5		12.5	25	50	100	200	300	400	500	600	-		î î
	Accuracy: 0 to -20 % 6 x l		0.7 <mark>(1)</mark>	1	2	4	8	12	16	20	24		AL S	Isd
	Accuracy: 0 to -20 % 7.2		0.7 <mark>(2)</mark>	0.69	1.38	2.7	5.5	8.3	11		16.6		IDMTL	tsd
IDMTL setting	Curve slope		SIT	VIT	EIT	HVFuse	DT	0.0		1010	1010	-		Li Alisu
Thermal memory						nd after tri						-		V ⇔li
(1) 0 to -40 % - (2) 0 to -60 %												-	0	
Short time (rms)													0	
Pick-up (A)	Isd = lr x		1.5	2	2.5	3	4	5	6	8	10			
Accuracy: ±10 %														
Time setting tsd (s)	Settings I ² t C	Off	0	0.1	0.2	0.3	0.4					-		
······ S ··· (-)	I ² t C		-	0.1	0.2	0.3	0.4							
Time delay (ms) at 10 Ir	t _{sd} (max resettable time)		20	80	140	230	350					-		
(l ² t Off or l ² t On)	t _{sd} (max break time)		80	140	200	320	500							
Instantaneous			00	140	200	520	500							
Pick-up (A)	li = ln x		2	3	4	6	8	10	12	15	off	4	t ▲	
	$\mathbf{I} = \mathbf{I} + \mathbf{X} \dots$		Z	3	4	0	0	10	12	15	UII	DB128044	1	l ² t on
Accuracy: ±10 % Time delay			Maxro	cottabl	o timo	20 ms						- 81	_ _ lg	
Time delay			Max br											[↑] I ² t off
Earth fault			Microl			115								tg
Pick-up (A)	la lov		A	B B	C	D	Е	F	G	Н	J			1 −
Accuracy: ±10 %	<u>Ig</u> = In x … In ≤ 400 A		0.3	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	-		v
Accuracy. ±10 /6	400 A < In < 1250 A		0.3 0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1		0	
	400 A < III < 1250 A In ≥ 1250 A		0.2 500	0.3 640	0.4 720	800	0.0 880	0.7 960		0.9 1120				
Time setting t _g (s)			0	0.1	0.2	0.3	0.4	900	1040	1120	1200	-		
Time setting tg (s)	J		-	0.1	0.2	0.3	0.4							
Time delay (me)	t _g (max resettable time)	-	20	80	140	230	350					- 	+4	
Time delay (ms) at In or 1200 A (I ² t Off or I ² t On)	t _g (max break time)		20 80	80 140	200	320	500					DB128045	l∆r 🛟 📫	ı
Residual earth leakage (Vigi)	tg (max break time)		Microl			320	500					081		
Sensitivity (A)	l∆n		0.5	1	2	3	5	7	10	20	30			$\Delta^{\Delta t}$
Accuracy: 0 to -20 %			0.5		2	5	J	/	10	20	50			V
Time delay Dt (ms)	Settings		60	140	230	350	800					-	0	
Thile delay br (ins)	Δt (max resettable time)		60	140	230	350	800					-		
	Δt (max resettable time)		140	200	320	500	1000)						K
Alexand other pro														
Alarms and other pro	Direction				IC 3.	0/6.0/								
Current	-		Thresh				Dela	,				DB128046	t∎	
Current unbalance	lunbalance		0.05 to		erage		1 to 4					B12		
Max. demand current	Imax demand : I1, I2, I3, IN,		0.2 In to	o In			15 to	1500	S			-	Thresho	bld
Earth fault alarm					(2)									
	Ι÷		10 to 10	00 % Ir	יי)		1 to 1	10 s						Arreshold
Voltage			01.05	0/			4.	10						
Voltage unbalance	Uunbalance		2 to 30				1 to 4							<u>∟</u>
Minimum voltage	Umin							o 10 s					Delay	Delay
Maximum voltage ⁽⁴⁾	Umax		ominito	12001	Jeiwee	en phases	1.2 to	UIUS						Delay
Power	-D		E to EO				0.24	0.20.0					0	I/U/P/
Reverse power	rP		5 to 50	JKVV			U.2 (o 20 s						
Frequency	Factor .		4E +- F				1.0.1	о Г -						
Minimum frequency	Fmin		45 to F		_		1.2 to							
Maximum frequency	Fmax		Fmin to	0 440 H	Z		1.2 to	05S						
Phase sequence			04/0/2	O.C.	0.10		0.0							
Sequence (alarm)	Ư		Ø1/2/3				0.3 s							
	econnection		Micr	olog	ic 5.	0/6.0/	7.0	Ρ						
Load shedding and r							Dela	N/				47	t ≜	
Measured value			Thresh									8	1 1	
v	1		Thresh 0.5 to 1		phase	S		s tr to 8	0 % tr			B1280		
Measured value	l P			Ir per		S	20 %			_	_	DB128047	Thresho	Id

Power		Micrologic 5.0/	6.0/7.0 P
Type of measurements		Range	Accuracy
Current maximeters of	l1, l2, l3, lN	0.2 x In to 1.2 x In	± 1.5 %
Voltages	V12, V23, V31, V1N, V2N, V3N	100 to 690 V	± 0.5 %
Power factor	PF	0 to 1	± 2 %
Frequency (Hz)			0.1 %
(<mark>3)</mark> In ≤ 400 A 30 % 400 A < In < 1250 A 20 % In ≥ 1250 A 10 %	(4) For 690 V applications, a step 690 V by more than 10 %.	p-down transformer must	be used if the voltage exceeds the nominal value of

_<u></u>___

Delay

Delay

I/P

Ĵ,

Functions and characteristics

Motor protection

Micrologic 2.2 / 2.3 M electronic trip units

Micrologic 2.2 / 2.3 M trip units provide built-in thermal and magnetic protection. They are used in 2-device motor-feeder solutions on Compact NSX100 to 630 circuit breakers with performance levels B/F/H/N/S/L. They provide protection for motors up to 315 kW at 400 V against:

short-circuits

PR103376

- overloads with selection of a trip class (5, 10 or 20)
- phase unbalance.

Circuit breakers with a Micrologic 2.2 / 2.3 M trip unit include protection similar to an inverse-time thermal relay. They are combined with a contactor.

Protection.....

Settings are made using a dial.

Overloads (or thermal protection): Long-time protection and trip class (Ir)

Inverse-time thermal protection against overloads with adjustable pick-up Ir. Settings are made in amperes. The tripping curve for the long-time protection, which indicates the time delay tr before tripping, is defined by the selected trip class.

Trip class (class)

The class is selected as a function of the normal motor starting time.

- Class 5: starting time less than 5 s.
- Class 10: starting time less than 10 s.
- Class 20: starting time less than 20 s.

For a given class, it is necessary to check that all motor-feeder components are sized to carry the 7.2 Ir starting current without excessive temperature rise during the time corresponding to the class.

Short-circuits: Short-time protection (Isd)

Protection with an adjustable pick-up Isd. There is a very short delay to let through motor starting currents.

Short-circuits: Non-adjustable instantaneous protection (li) Instantaneous protection with non-adjustable pick-up li.

Phase unbalance or phase loss (lunbal) (📩)

This function opens the circuit breaker if a phase unbalance occurs:

- that is greater than the 30 % fixed pick-up lunbal
- following the non-adjustable time delay **tunbal** equal to:
- □ 0.7 s during starting
- □ 4 s during normal operation.

Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions.

Indications

Front indications

Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.

Red alarm LED for motor operation: goes ON when the thermal image of the rotor and stator is greater than 95 % of the permissible temperature rise.

Remote indications via SDTAM module

Compact NSX devices with a Micrologic 2 can be equipped with an SDTAM module dedicated to motor applications for:

- a contact to indicate circuit-breaker overload
- a contact to open the contactor. In the event of a phase unbalance or overload, this output is activated 400 ms before circuit-breaker tripping to open the contactor and avoid circuit breaker tripping.

This module takes the place of the MN/MX coils and an OF contact.

SDTAM remote indication relay module

with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Ratings (A)	In at 65 °C (1)		25	50	100	150	220	320	500				
Circuit breaker	Compact NSX100					-	-	-	-				
	Compact NSX160		•				-	-	-				
	Compact NSX250		•		•	•		-	-				
	Compact NSX400		-	-	-	-	-		-				
	Compact NSX630		-	-	-	-	-	•	•				
Overloads (or the second se	hermal protection): I	Long-tin	ne prot	ection a	and trip	class							
Pick-up (A)	lr		value c	value depending on trip unit rating (In) and setting on dial									
ripping between	In = 25 A	Ir =	12	14	16	18	20	22	23	24	25		
1.05 and 1.20 Ir	In = 50 A	Ir =	25	30	32	36	40	42	45	47	50		
	In = 100 A	Ir =	50	60	70	75	80	85	90	95	100		
	In = 150 A	Ir =	70	80	90	100	110	120	130	140	150		
	In = 220 A	Ir =	100	120	140	155	170	185	200	210	220		
	In = 320 A	lr =	160	180	200	220	240	260	280	300	320		
	In = 500 A	lr =	250	280	320	350	380	400	440	470	500		
Trip class as per IEC 60	947-4-1		5	10	20								
Time delay (s)	ne delay (s) tr 1.5 x lr		120	240	480	for wa	rm motor						
depending on selected trip class 6 x Ir		6.5	13.5	26	for col	d motor							
		7.2 x lr	5	10	20	for col	d motor						
Thermal memory			20 min	utes befo	ore and af	ter trippi	ng						
Cooling fan			non-ac	ljustable ·	- motor se	elf-coole	d						
Short-circuits:	Short-time protectio	n with fi	ixed tin	ne delay	/								
Pick-up (A)	lsd = lr x		5	6	7	8	9	10	11	12	13		
accuracy ±15 %													
Time delay (ms)	tsd			ljustable									
	Non-tripping time	10											
	Maximum break time		60										
Short-circuits: I	Non-adjustable insta	antaneo	us prot	ection									
Pick-up (A) accuracy ±15 %	li non-adjustable		425	750	1500	2250	3300	4800	6500				
Time delay (ms)	Non-tripping time		0										
	Maximum break time		30										
Phase unbalance o		15											
Pick-up (A)	lunbal in % average c	urrent ⁽²⁾	> 30 %										
accuracy ±20 %													

(1) Motor standards require operation at 65 °C. Circuit-breaker ratings are derated to take this requirement into account.

(2) The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

Unbalance of phase currents and voltages.

Additional technical characteristics Phase unbalance

An unbalance in three-phase systems occurs when the three voltages are not equal in amplitude and/or not displaced 120° with respect to each other. It is generally due to single-phase loads that are incorrectly distributed throughout the system and unbalance the voltages between the phases.

These unbalances create negative current components that cause braking torques and temperature rise in asynchronous machines, thus leading to premature ageing. **Phase loss**

Phase loss is a special case of phase unbalance.

During normal operation, it produces the effects mentioned above and tripping must occur after four seconds.

■ During starting, the absence of a phase may cause motor reversing, i.e. it is the load that determines the direction of rotation. This requires virtually immediate tripping (0.7 seconds). Starting time in compliance with the class (Micrologic 2 M)

For normal motor starting, Micrologic 2 M checks the conditions below with respect to the thermal-protection (long-time) pick-up Ir:

current > 10 % x Ir (motor-off limit)

• overrun of 1.5 x Ir threshold, then return below this threshold before the end of a 10 s time delay.

If either of these conditions is not met, the thermal protection trips the device after a maximum time equal to that of the selected class.

Pick-up Ir must have been set to the current indicated on the motor rating plate.

Long starts (Micrologic 6 E-M)

When this function is not activated, the starting conditions are those indicated above. When it is activated, this protection supplements thermal protection (class). A long start causes tripping and is characterised by:

- current > 10 % x Ir (motor-off limit) with:
- either overrun of the long-time pick-up (1 to 8 x lr) without return below the pick-up before the

end of the long-time time delay (1 to 200 s) \blacksquare or no overrun of the long-time pick-up (1 to 8 x lr) before the end of the long-time time delay (1

► to 200 s).

Pick-up Ir must have been set to the current indicated on the motor rating plate. This protection should be coordinated with the selected class.

Motor starting and long starts.

Schneider

<u>_⊫</u>>∣

Functions and characteristics

Motor protection Micrologic 6 E-M electronic trip units

Micrologic 6.E-M is used in 2-device motor-feeder solutions.

It provides the same protection as Micrologic 2 M: short-circuits

overloads with selection of the same trip classes (5, 10 or 20), plus trip class 30 for starting of machines with high inertia.

In addition, it offers specific motor-protection functions that can be set via the keypad.

Protection...

The protection functions are identical to those of Micrologic 2 M and can be fine-adjusted via the keypad CO

Access to setting modifications via the keypad is protected by a locking function that is controlled by a microswitch **Q**. The lock is activated automatically if the keypad is not used for 5 minutes. Access to the microswitch is protected by a transparent lead-sealable cover. It is possible to scroll through settings and measurements with the cover closed.

Overloads (or thermal), class and short-circuits

The long-time, short-time and instantaneous functions are identical to those of Micrologic 2 M.

In addition, there is trip class 30 for long-time protection and a setting for self-cooled or fan-cooled motors (🛃).

Ground-fault protection (Ig)

Residual type ground-fault protection with an adjustable pick-up Ig (with Off position) and adjustable time delay tg.

Phase unbalance or phase loss (lunbal)

This function opens the circuit breaker if a phase unbalance occurs:

■ that is greater than the **lunbal** pick-up that can be fine-adjusted from 10 to 40 % (30 % by default)

- following the tunbal time delay that is:
- □ 0.7 s during starting

□ adjustable from 1 to 10 seconds (4 seconds by default) during normal operation. Phase loss is an extreme case of phase unbalance and leads to tripping under the same conditions

Locked rotor (Ijam)

This function detects locking of the motor shaft caused by the load.

During motor starting (see page A-41), the function is disabled. During normal operation, it causes tripping:

- above the ljam pick-up that can be fine-adjusted from 1 to 8 x Ir

■ in conjunction with the tjam time delay that can be adjusted from 1 to 30 seconds.

Under-load (lund)

This function detects motor no-load operation due to insufficient load (e.g. a drained pump). It detects phase undercurrent.

During motor starting (see page A-41), the function is always enabled. During normal operation, it causes tripping:

■ below the lund pick-up that can be fine-adjusted from 0.3 to 0.9 x Ir

■ in conjunction with the tund time delay that can be adjusted from 1 to 200 seconds.

Long starts (llong)

This protection supplements thermal protection (class).

It is used to better adjust protection to the starting parameters.

It detects abnormal motor starting, i.e. when the starting current remains too high or too low with respect to a pick-up value and a time delay.

- It causes tripping:
- in relation with a **llong** pick-up that can be fine-adjusted from 1 to 8 x Ir ■ in conjunction with the tlong time delay that can be adjusted from 1 to 200

seconds.

(see "long starts" page A-41)

Display of type of fault

◙

On a fault trip, the type of fault (Ir, Isd, Ii, Ig, lunbal, Ijam), the phase concerned and the interrupted current are displayed.

Indications Front indications

- Green "Ready" LED: flashes slowly when the circuit breaker is ready to trip in the event of a fault.
- Red alarm LED for motor operation: goes ON when the thermal image of the rotor or stator is greater than 95% of the permissible temperature rise.

Remote indications via SDTAM or SDx module

See description on page A-40 for SDTAM and page A-77 for SDx.

SDTAM remote indication relav module with its terminal block.

Note: all the trip units have a transparent lead-sealable cover that protects access to the adjustment dials.

Micrologic 6.2	/ 6.3 E-N	1										
Ratings (A)	In at 65 °	C (1)		25	50	80	150	220	320	500		
Circuit breaker	Compact I			•	•	•	-	-	-	-		
	Compact N			5				-	-	-		
	Compact I Compact I				-			• •		-		
	Compact			-	-	-	-	-	-			
Overloads: Lo												
'ick-up (A)	lr .	Dial setting	J	Value	dependin	g on trip-u	init rating	(In) and	setting o	n dial		
Tripping between		ln = 25 A	Ir =	12	14	16	18	20	22	23	24	25
1.05 and 1.20 Ir		In = 50 A	lr =	25	30	32	36	40	42	45	47	50
		In = 80 A	lr =	35	42	47	52	57	60	65	72	80
		$\ln = 150 A$		70	80	90	100	110	120	130	140	150
		In = 220 A In = 320 A		100 160	120 180	140 200	155 220	170 240	185 260	200 280	210 300	220 320
		$\ln = 520 \text{ A}$ $\ln = 500 \text{ A}$		250	280	320	350	240 380	400	280 440	300 470	520 500
		Keypad se				ts in 1 A st						
rip class as per IEC 6	0947-4-1			5	10	20	30					g
îme delay (s)	tr		1.5 x lr	120	240	480	720	for wa	rm motor			
depending on selected	trip class		6 x Ir	6.5	13.5	26	38	for col	d motor			
			7.2 x lr	5	10	20	30	for col	d motor			
hermal memory				20 mii	nutes befo	ore and aft	ter trippin	g				
Cooling fan					-	-cooled or	fan-cool	ed moto	rs			
Short-circuits:		•	on with									
Pick-up (A) ccuracy ±15 %	lsd = lr x			5 Fina a	6 diustmon	7 tho 0 5 v li	8 r otopo uo	9 ing the l	10	11	12	13
ime delay	tsd				djustmen djustable	t ln 0.5 x l	r steps us	ing the l	keypad			
ine delay	Non-trippi	na time		10 ms								
		break time		60 ms								
Short-circuits:			tantane			l						
Pick-up (A)	li non-adju	istable		425	750	1200	2250	3300	4800	6500		
ccuracy ±15 %	Non-trippi			0 ms								
	Maximum	break time		30 ms								
Ground faults				Dial s	otting							
Pick-up (A) accuracy ±10 %	lg = ln x	In = 25 A	lg =	0.6	0.6	0.6	0.6	0.7	0.8	0.9	1	Off
,, ,		$\ln = 50 \text{ A}$	lg =	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	Off
		In > 50 A	lg =	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1	Off
			Ū	fine ad	djustment	s in 0.05 x	In steps					
īme delay (ms)	tg			0	0.1	0.2	0.3	0.4				
	Non-trippi	0		20	80	140	230	350				
		break time		80	140	200	320	500				
Phase unbalance		oss n % average	current (2) adjuct	able from	10 to 40.0	6 dofoult	sotting	= 30 %			
Pick-up (A) accuracy ±20 %	iunibai = Ir	i /o average	current (*	fine ac	ljustments	s in 1 % st motor sta	eps using					
Time delay (s)	tunbal				uring star		Ŭ					
						during no				ting = 4 s	econds	
Locked rotor				tine ac	justments	s in 1 s ste	ps using	ите кеур	DBC			
Locked rotor Pick-up (A)	ljam = lr x			1 x 8 h	with Off r	osition, d	efault set	ting = Ω	ff			
accuracy ±10 %	ijani – n X			fine ac	ljustments	s in 0.1 x li motor stai	r steps us					
Time delay (s)	tjam =			1 to 30	seconds							
				fine ac	ljustments	s in 1 s ste	ps using	the keyp	oad, defau	ult setting	j=5s	
Under-load (under	,			0.0	O less'll	Off = = : '!'	n d-£ "	0.044	- 0"			
Pick-up (A) accuracy ±10 %	lund = lr x			Fine a	djustment	Off positio is in Ir x 0. motor sta	01 steps	0		ftware		
lime delay (s)	tund =			1 to 20	0 second			the RSU	J software	, default	setting =	10 s
Long starts												
Pick-up (A)	llong = lr >	K				position, d						
accuracy ±10 %				activat	ed during	s in Ir x 0. motor sta		sing the	RSU soft	ware		
Time delay (s)	tlong =				0 second ljustments	s s in 1 s ste	ps using	the RSU	J software	, default	setting =	10 s
) Motor standards red	nuire operati	on at 65 °C. (Circuit-br	eaker ra	tings are o	derated to	take this	reauirei	ment into	account.		

Motor standards require operation at 65 °C. Circuit-breaker ratings are derated to take this requirement into account.
 The unbalance measurement takes into account the most unbalanced phase with respect to the average current.

A-43

Tripping curves

Compact NSX100 to 250 Protection of distribution systems

TM magnetic trip units (cont.)

TM80D / TM100D

TM125D/TM160D

Tripping curves

Compact NSX100 to 250

Protection of distribution systems (cont.)

Micrologic 5.2 and 6.2 A or E - 40... 160 A

Micrologic 5.2 and 6.2 A or E - 250 A

Tripping curves

Compact NSX100 to 250

Motor protection

Reflex tripping.

Micrologic 6.2 E-M electronic trip units

Micrologic 6.2 E-M - 25 A

Micrologic 6.2 E-M - 50... 220 A

Reflex tripping.

Tripping curves

Compact NSX400 to 630

Protection of distribution systems

Micrologic 6.3 A or E electronic trip units (cont.)

Micrologic 6.3 A or E (ground-fault protection)

E-9

Tripping curves

Compact NSX400 to 630

Motor protection

Micrologic 6.3 E-M electronic trip units

Micrologic 6.3 E-M - 320 A

Micrologic 6.3 E-M - 500 A

Reflex tripping.

Current and energy limiting curves

The limiting capacity of a circuit breaker is its aptitude to let through a current, during a short-circuit, that is less than the prospective short-circuit current.

The exceptional limiting capacity of the Compact NSX range is due to the rotating double-break technique (very rapid natural repulsion of contacts and the appearance of two arc voltages in-series with a very steep wave front).

lcs = 100 % lcu

The exceptional limiting capacity of the Compact NSX range greatly reduces the forces created by fault currents in devices.

The result is a major increase in breaking performance.

In particular, the service breaking capacity Ics is equal to 100 % of Icu.

The Ics value, defined by IEC standard 60947-2, is guaranteed by tests comprising the following steps:

- break three times consecutively a fault current equal to 100 % of Icu
- check that the device continues to function normally, that is:
- □ it conducts the rated current without abnormal temperature rise
- protection functions perform within the limits specified by the standard
- suitability for isolation is not impaired.

Longer service life of electrical installations

Current-limiting circuit breakers greatly reduce the negative effects of short-circuits on installations.

Thermal effects

Less temperature rise in conductors, therefore longer service life for cables.

Mechanical effects

Reduced electrodynamic forces, therefore less risk of electrical contacts or busbars being deformed or broken.

Electromagnetic effects

Fewer disturbances for measuring devices located near electrical circuits.

Economy by means of cascading

Cascading is a technique directly derived from current limiting. Circuit breakers with breaking capacities less than the prospective short-circuit current may be installed downstream of a limiting circuit breaker. The breaking capacity is reinforced by the limiting capacity of the upstream device. It follows that substantial savings can be made on downstream equipment and enclosures.

Current and energy limiting curves

The limiting capacity of a circuit breaker is expressed by two curves which are a function of the prospective short-circuit current (the current which would flow if no protection devices were installed):

the actual peak current (limited current)

• thermal stress (A²s), i.e. the energy dissipated by the short-circuit in a conductor with a resistance of 1 Ω .

Example

What is the real value of a 150 kA rms prospective short-circuit (i.e. 330 kA peak) limited by an NSX250L upstream ?

The answer is 30 kA peak (curve page E-14).

Maximum permissible cable stresses

The table below indicates the maximum permissible thermal stresses for cables depending on their insulation, conductor (Cu or Al) and their cross-sectional area (CSA). CSA values are given in mm² and thermal stresses in A²s.

CSA		1.5 mm ²	2.5 mm ²	4 mm ²	6 mm ²	10 mm ²
PVC	Cu	2.97x10 ⁴	8.26x10 ⁴	2.12x10⁵	4.76x10⁵	1.32x10 ⁶
	AI					5.41x10⁵
PRC	Cu	4.10x10 ⁴	1.39x10⁵	2.92x10⁵	6.56x10⁵	1.82x10 ⁶
	AI					7.52x10⁵
CSA		16 mm ²	25 mm²	35 mm²	50 mm²	
PVC	Cu	3.4x10 ⁶	8.26x10 ⁶	1.62x10 ⁷	3.31x10 ⁷	
	AI	1.39x10 ⁶	3.38x10 ⁶	6.64x10 ⁶	1.35x10 ⁷	
PRC	Cu	4.69x10 ⁶	1.39x10 ⁷	2.23x10 ⁷	4.56x10 ⁷	
	AI	1.93x10 ⁶	4.70x10 ⁶	9.23x10 ⁶	1.88x10 ⁷	

Example

Is a Cu/PVC cable with a CSA of 10 mm² adequately protected by an NSX160F? The table above indicates that the permissible stress is 1.32×10^6 A²s. All short-circuit currents at the point where an NSX160F (Icu = 35 kA) is installed are limited with a thermal stress less than 6×10^5 A²s (curve page E-14). Cable protection is therefore ensured up to the limit of the breaking capacity of the circuit breaker.

Current-limiting curves

Current-limiting curves

Rated short-circuit current (kA rms)

Thermal-stress curves

(1) Valid for 480 V Nema.

Current-limiting curves

Circuit breaker	Thermal		Contact	or
NS80H-MA	relay			
Cal. 80 A	LRD-33	63	63/80	LC1-D80
Cal. 80 A	LRD-33	59	48/65	LC1-D65
Cal. 50 A	LRD-33	57	37/50	LC1-D65
Cal. 50 A	LRD-33	55	30/40	LC1-D65
Cal. 50 A	LRD-33	53	23/32	LC1-D65
Cal. 25 A	LRD-33	22	17/25	LC1-D65
Cal. 25 A	LRD-13	21	12/18	LC1-D65
Cal. 12.5 A	LRD-13	16	09/13	LC1-D65
Cal. 12.5 A	LRD-13	14	07/10	LC1-D65
Cal. 12.5 A	LRD-13	12	5.5/08	LC1-D32
Cal. 6.3 A	LRD-13	10	04/06	LC1-D65
Cal. 6.3 A	LRD-13	08	2.5/04	LC1-D65
Cal. 2.5 A	LRD-13	07	1.6/2.5	LC1-D65
Cal. 2.5 A	LRD-13	06	01/1.6	LC1-D09

Voltage 400/440 V AC (1)

Rated short-circuit current (kA rms)

Thermal-stress curves

Circuit breaker	Thermal		Contact	Contactor			
NS80H-MA	relay						
Cal. 80 A	LRD-33	63	63/80	LC1-D80			
Cal. 80 A	LRD-33	59	48/65	LC1-D65	DB115292		
Cal. 50 A	LRD-33	57	37/50	LC1-D65	DB1		
Cal. 50 A	LRD-33	55	30/40	LC1-D65			
Cal. 50 A	LRD-33	53	23/32	LC1-D65			
Cal. 25 A	LRD-33	22	17/25	LC1-D65			
Cal. 25 A	LRD-13	21	12/18	LC1-D65			
Cal. 12.5 A	LRD-13	16	09/13	LC1-D65			
Cal. 12.5 A	LRD-13	14	07/10	LC1-D65			
Cal. 12.5 A	LRD-13	12	5.5/08	LC1-D32			
Cal. 6.3 A	LRD-13	10	04/06	LC1-D65			
Cal. 6.3 A	LRD-13	08	2.5/04	LC1-D65			
Cal. 2.5 A	LRD-13	07	1.6/2.5	LC1-D65			
Cal. 2.5 A	LRD-13	06	01/1.6	LC1-D09			

Limited energy 2 10 5 3 2 10 A² S 5 3 2

Voltage 400/440V AC (1)

50 A

